让形状说话 - 使用共轭引物进行判别面对齐Let the Shape Speak - Discriminative Face Alignment using Conjugate Priors |
|
课程网址: | http://videolectures.net/bmvc2012_martins_conjugate_priors/ |
主讲教师: | Pedro Martins |
开课单位: | 科英布拉大学 |
开课时间: | 2012-10-09 |
课程语种: | 英语 |
中文简介: | 本研究提出了一种新的贝叶斯公式,用于对齐不可见图像中的人脸。我们的方法与约束局部模型(CLM)和主动形状模型(ASM)密切相关,其中局部特征检测器的集合被约束在由点分布模型(PDM)张成的子空间中。将模型拟合到图像通常涉及两个步骤:使用检测器进行局部搜索,获取每个地标(似然项)的响应映射,以及找到共同最大化所有检测响应的PDM参数的全局优化。全局优化可以看作是一个贝叶斯推理问题,其中PDM参数(包括位姿)的后验分布可以在最大后验(MAP)意义下进行推理。面是由连续的动态跃迁描述的非刚性结构,因此考虑形状的潜在动力学特性至关重要。提出了一种新的贝叶斯全局优化策略,利用先验对PDM参数的动态转换进行编码。采用递归贝叶斯估计方法,将数据的先验分布建模为高斯分布。假设均值和协方差未知,作为随机变量处理。这意味着我们不仅要估计均值和协方差,还要估计均值和协方差的概率分布(使用共轭先验)。在使用相同的本地检测器的同时,对几个标准数据集(IMM、BioID、XM2VTS和FGNET talk Face)进行了广泛的评估。最后,还展示了从野外(LFW)数据集中具有挑战性的标记人脸中获得的定性结果。 |
课程简介: | This work presents a novel Bayesian formulation for aligning faces in unseen images. Our approach is closely related to Constrained Local Models (CLM) and Active Shape Models (ASM), where an ensemble of local feature detectors are constrained to lie within the subspace spanned by a Point Distribution Model (PDM). Fitting a model to an image typically involves two steps: a local search using a detector, obtaining response maps for each landmark (likelihood term) and a global optimization that finds the PDM parameters that jointly maximize all the detection responses. The global optimization can be seen as a Bayesian inference problem, where the posterior distribution of the PDM parameters (including pose) can be inferred in a maximum a posteriori (MAP) sense. Faces are nonrigid structures described by continuous dynamic transitions, so it is crucial to account for the underlying dynamics of the shape. We present a novel Bayesian global optimization strategy, where the prior is used to encode the dynamic transitions of the PDM parameters. Using recursive Bayesian estimation we model the prior distribution of the data as being Gaussian. The mean and covariance were assumed to be unknown and treated as random variables. This means that we estimate not only the mean and the covariance but also the probability distribution of the mean and the covariance (using conjugate priors). Extensive evaluations were performed on several standard datasets (IMM, BioID, XM2VTS and FGNET Talking Face) against state-ofthe- art methods while using the same local detectors. Finally, qualitative results taken from the challenging Labeled Faces in the Wild (LFW) dataset are also shown. |
关 键 词: | 贝叶斯公式; 约束局部模型; 活动形状模型 |
课程来源: | 视频讲座网 |
最后编审: | 2020-09-28:heyf |
阅读次数: | 54 |