0


具有平均场推断的密集随机场的改进初始化和高斯混合成对项

Improved Initialisation and Gaussian Mixture Pairwise Terms for Dense Random Fields with Mean-field Inference
课程网址: http://videolectures.net/bmvc2012_vineet_mean_field/  
主讲教师: Vibhav Vineet
开课单位: 牛津布鲁克斯大学
开课时间: 2012-10-09
课程语种: 英语
中文简介:
最近,Krahenbuhl和Koltun提出了一种利用条件随机场(CRF)的平均场近似对紧密相连的随机场进行有效推理的方法。然而,它们将其对权值限制为高斯核的加权组合形式,其中每个高斯分量只能取零均值,并且只能对每个标记对用一个值进行重新调整。此外,它们的方法对初始化很敏感。在本文中,我们提出了缓解这些问题的方法。首先,我们提出一种分层平均场方法,将标签从较粗的层次传播到较细的层次,以便更好地初始化。此外,我们使用基于筛选流的标签传输在最粗的级别上提供一个良好的初始条件。其次,我们允许我们的方法采取一般的高斯对权值,在那里我们学习均值,协方差矩阵,和混合系数对每个混合成分。摘要针对由最大似然函数确定的混合模型参数分段学习问题,提出了期望极大化(EM)的一种变化。最后,我们证明了我们的方法在两个具有挑战性的数据集:pascalvocs -10分割和CamVid数据集的目标类分割问题上的有效性和准确性。我们表明,我们能够达到的性能CamVid数据集,和一个几乎3%改善PascalVOC - 10集相对于基线graph-cut和平均场方法,同时也降低了推理时间近3倍相比graph-cuts基础方法。
课程简介: Recently, Krahenbuhl and Koltun proposed an efficient inference method for densely connected pairwise random fields using the mean-field approximation for a Conditional Random Field (CRF). However, they restrict their pairwise weights to take the form of a weighted combination of Gaussian kernels where each Gaussian component is allowed to take only zero mean, and can only be rescaled by a single value for each label pair. Further, their method is sensitive to initialization. In this paper, we propose methods to alleviate these issues. First, we propose a hierarchical mean-field approach where labelling from the coarser level is propagated to the finer level for better initialisation. Further, we use SIFT-flow based label transfer to provide a good initial condition at the coarsest level. Second, we allow our approach to take general Gaussian pairwise weights, where we learn the mean, the co-variance matrix, and the mixing co-efficient for every mixture component. We propose a variation of Expectation Maximization (EM) for piecewise learning of the parameters of the mixture model determined by the maximum likelihood function. Finally, we demonstrate the efficiency and accuracy offered by our method for object class segmentation problems on two challenging datasets: PascalVOC-10 segmentation and CamVid datasets. We show that we are able to achieve state of the art performance on the CamVid dataset, and an almost 3% improvement on the PascalVOC- 10 dataset compared to baseline graph-cut and mean-field methods, while also reducing the inference time by almost a factor of 3 compared to graph-cuts based methods.
关 键 词: 有效的推理方法; 条件随机场; 图切割
课程来源: 视频讲座网
最后编审: 2020-09-28:heyf
阅读次数: 117