0


助推新发展的概述

Overview of New Developments in Boosting
课程网址: http://videolectures.net/cmulls08_bradley_ond/  
主讲教师: Joseph K. Bradley
开课单位: Databricks公司
开课时间: 2008-02-21
课程语种: 英语
中文简介:
我将概述最近在推动方面的发展,重点关注三篇论文,这些论文采取了截然不同的方法来提高效率和效率。助推器通过弱学习者迭代地选择基本分类器,然后通过训练样本更新分布。粗略地说,这三篇论文显示了在这一句增强推导中隐含的三个问题的进展:所需的迭代次数,选择良好的基本分类器的计算成本,以及维持分布而不是训练样本的时间和空间复杂性。 Warmuth,Liao和Ratsch(2006)提出了TotalBoost,这是一种“完全矫正”的增强算法。直观地,在每一轮中,完全校正的助推器选择基础分类器,其提供在先前选择的基础分类器中不存在的更多信息。这导致更少的迭代和更小的最终假设。 Barutcuoglu,Long和Servedio(2007)描述了一种替代模型,用于提高对基本分类器多样性的假设,使得助推器能够在一组基础分类器中学习。这消除了在每轮上优化所有基础分类器的需要。 Bradley和Schapire(2007)提出了一种名为FilterBoost的算法,该算法训练从oracle而不是一组固定的例子中得出的例子。这种替代学习框架可以通过一组训练样本通过单次传递来模拟学习,并允许助推器在非常大的数据集上进行有效训练。
课程简介: I will give an overview of recent developments in boosting, focusing on three papers which take very different approaches towards making boosting more efficient and effective. Boosters iteratively choose base classifiers via a weak learner and then update a distribution over training examples. Roughly, the three papers show progress on the three issues implicit in this one-sentence description of boosting: the number of iterations required, the computational cost of choosing good base classifiers, and the time and space complexity from maintaining a distribution over training examples. Warmuth, Liao, and Ratsch (2006) propose TotalBoost, which is a "totally corrective" boosting algorithm. Intuitively, on each round, totally corrective boosters choose base classifiers which give more information not present in previously chosen base classifiers. This leads to fewer iterations and smaller final hypotheses. Barutcuoglu, Long, and Servedio (2007) describe an alternative model for boosting where assumptions about the diversity of base classifiers allow the booster to learn in a single pass over the set of base classifiers. This eliminates the need to optimize over all base classifiers on each round. Bradley and Schapire (2007) propose an algorithm called FilterBoost which trains on examples drawn from an oracle rather than a fixed set of examples. This alternative learning framework can model learning via a single pass over the set of training examples and allows the booster to train efficiently on very large datasets.
关 键 词: 助推器; 替代学习框架; 提高效率
课程来源: 视频讲座网
最后编审: 2019-03-03:lxf
阅读次数: 70