自适应密度水平集聚类Adaptive Density Level Set Clustering |
|
课程网址: | http://videolectures.net/colt2011_steinwart_level/ |
主讲教师: | Ingo Steinwart |
开课单位: | 洛斯阿拉莫斯国家实验室 |
开课时间: | 2011-08-02 |
课程语种: | 英语 |
中文简介: | 集群通常被定义为密度水平集的连接组件。不幸的是,这种差异取决于需要通过某种方式由用户指定的水平。本文提出了一种简单的算法,它能够渐进地确定最优水平,即数据生成分布的聚类树中出现第一个分裂的水平。我们进一步证明了该算法渐近地恢复了相应的连通分量。与以前的工作不同,我们的分析不需要对密度(如连续性甚至平滑性)作出强有力的假设。 |
课程简介: | Clusters are often defined to be the connected components of a density level set. Unfortunately, this definition depends on a level that needs to be user specified by some means. In this paper we present a simple algorithm that is able to asymptotically determine the optimal level, that is, the level at which there is the first split in the cluster tree of the data generating distribution. We further show that this algorithm asymptotically recovers the corresponding connected components. Unlike previous work, our analysis does not require strong assumptions on the density such as continuity or even smoothness. |
关 键 词: | 集群; 密度水平集; 最优化算法; 连通分量 |
课程来源: | 视频讲座网 |
最后编审: | 2020-06-08:heyf |
阅读次数: | 55 |