首页代数学
   首页数学
0


线性二次系统自适应控制的边界

Regret Bounds for the Adaptive Control of Linear Quadratic Systems
课程网址: http://videolectures.net/colt2011_szepesvari_regret/  
主讲教师: Csaba Szepesvári
开课单位: 加拿大阿尔伯塔大学
开课时间: 2011-08-02
课程语种: 英语
中文简介:
研究了模型参数未知的平均成本线性二次(LQ)问题,也称为控制界中的自适应控制问题。我们设计了一个算法,并证明了除对数因子外,它在T时刻的后悔值为O(√T)。与许多传统方法使用forced-exploration方案为参数估计提供足量的信息,我们构建一个高概率con fidence设置模型参数和设计一个算法,乐观地对这案子fidence集合。con fidence组的建设是基于新的在线最小二乘估计和导致的结果改进驶往该算法最坏的遗憾。据我们所知,这是第一次为LQ问题导出遗憾界。
课程简介: We study the average cost Linear Quadratic (LQ) problem with unknown model parameters, also known as the adaptive control problem in the control community. We design an algorithm and prove that its regret up to time T is O(√T) apart from logarithmic factors. Unlike many classical approaches that use a forced-exploration scheme to provide the suffi cient exploratory information for parameter estimation, we construct a high-probability con fidence set around the model parameters and design an algorithms that plays optimistically with respect to this con fidence set. The construction of the con fidence set is based on the new results from online least-squares estimation and leads to improved worst-case regret bound for the proposed algorithm. To best of our knowledge this is the the fi rst time that a regret bound is derived for the LQ problem.
关 键 词: 模型参数; 线性二次问题; 自适应控制; 对数因子
课程来源: 视频讲座网
最后编审: 2019-10-17:cwx
阅读次数: 55