首页数学
0


通过强烈适当的损失,ROC曲线下面积的代理后悔界限

Surrogate Regret Bounds for the Area Under the ROC Curve via Strongly Proper Losses
课程网址: http://videolectures.net/colt2013_agarwal_bounds/  
主讲教师: Shivani Agarwal
开课单位: 班加罗尔印度科学院
开课时间: 2011-08-02
课程语种: 英语
中文简介:
ROC曲线下面积(area under The ROC curve, AUC)是机器学习中广泛使用的一种性能指标,近年来得到了广泛的研究,尤其是在二部图排序的背景下。AUC优化/二分图排序的主要理论和算法框架是将问题简化为成对分类;特别是AUC遗憾可以表示为成对分类的遗憾,而遗憾又可以用通常的遗憾边界进行二值分类的上界。最近,Kotlowski等人(2011)在标准(非成对)逻辑损失和指数损失的“平衡”版本的后悔方面显示了AUC后悔界限。在这篇论文中,我们得到了AUC的一个(非成对的)替代后悔界限,它包含了我们称之为强适当的一类广泛的适当(复合)损失。我们的证明技术比Kotlowski等人(2011)的证明技术要简单得多,并且依赖于里德和威廉姆森(2009,2010,2011)等人最近阐明的适当(复合)损失的性质。我们的结果根据各种强适当损失(例如逻辑损失、指数损失、平方损失和平方铰链损失)给出了显式的替代界限(没有隐藏的平衡项)。一个重要的结果是,最小化(非成对)强适当损失的标准算法,例如逻辑回归和增强算法(假设有一个通用函数类和适当的正则化),实际上是auco一致的;此外,我们的研究结果允许我们用相应的替代后悔来量化AUC后悔。我们还通过Clemenand Robbiano(2011)的最新结果,在某些低噪声条件下获得了更严格的代理后悔界限。
课程简介: The area under the ROC curve (AUC) is a widely used performance measure in machine learning, and has been widely studied in recent years particularly in the context of bipartite ranking. A dominant theoretical and algorithmic framework for AUC optimization/bipartite ranking has been to reduce the problem to pairwise classification; in particular, it is well known that the AUC regret can be formulated as a pairwise classification regret, which in turn can be upper bounded using usual regret bounds for binary classification. Recently, Kotlowski et al. (2011) showed AUC regret bounds in terms of the regret associated with ‘balanced’ versions of the standard (non-pairwise) logistic and exponential losses. In this paper, we obtain such (non-pairwise) surrogate regret bounds for the AUC in terms of a broad class of proper (composite) losses that we term strongly proper. Our proof technique is considerably simpler than that of Kotlowski et al. (2011), and relies on properties of proper (composite) losses as elucidated recently by Reid and Williamson (2009, 2010, 2011) and others. Our result yields explicit surrogate bounds (with no hidden balancing terms) in terms of a variety of strongly proper losses, including for example logistic, exponential, squared and squared hinge losses. An important consequence is that standard algorithms minimizing a (non-pairwise) strongly proper loss, such as logistic regression and boosting algorithms (assuming a universal function class and appropriate regularization), are in fact AUC-consistent; moreover, our results allow us to quantify the AUC regret in terms of the corresponding surrogate regret. We also obtain tighter surrogate regret bounds under certain low-noise conditions via a recent result of Clémenand Robbiano (2011).
关 键 词: ROC曲线; 机器学习; 二部图排序; 算法框架; 简化问题; 后悔界限
课程来源: 视频讲座网
最后编审: 2019-10-17:cwx
阅读次数: 119