0


对低秩核矩阵近似的分析

Sharp analysis of low-rank kernel matrix approximation
课程网址: http://videolectures.net/colt2013_bach_matrix/  
主讲教师: Francis R. Bach
开课单位: 水产养殖自然研究所
开课时间: 2011-08-02
课程语种: 英语
中文简介:
研究了核岭回归、核逻辑回归和支持向量机等正定核框架下的监督学习问题。由于内核导致无穷维特征空间,一个常见的实际限制困难是计算内核矩阵的必要性,这通常导致运行时间至少为观测次数n的二次的算法,即O(n2)。通常考虑核矩阵的低秩近似,因为它们允许将运行时间复杂度降低到O(p2n),其中p是近似的秩。这些方法的实用性因此取决于所需的等级p。本文我们表明,基于随机逼近原始内核的子集的列矩阵,等级p可能选择是线性相关的自由度问题,数量是经典统计分析中使用的方法,和通常被视为非参数估计的隐式参数的数量。这一结果支持具有次二次运行时间复杂度的简单算法,但可证明对于任何给定的问题实例,且不仅是对于最坏情况,具有与现有算法相同的预测性能。
课程简介: We consider supervised learning problems within the positive-definite kernel framework, such as kernel ridge regression, kernel logistic regression or the support vector machine. With kernels leading to infinite-dimensional feature spaces, a common practical limiting difficulty is the necessity of computing the kernel matrix, which most frequently leads to algorithms with running time at least quadratic in the number of observations n, i.e., O(n2). Low-rank approximations of the kernel matrix are often considered as they allow the reduction of running time complexities to O(p2n), where p is the rank of the approximation. The practicality of such methods thus depends on the required rank p. In this paper, we show that for approximations based on a random subset of columns of the original kernel matrix, the rank p may be chosen to be linear in the degrees of freedom associated with the problem, a quantity which is classically used in the statistical analysis of such methods, and is often seen as the implicit number of parameters of non-parametric estimators. This result enables simple algorithms that have sub-quadratic running time complexity, but provably exhibit the same predictive performance than existing algorithms, for any given problem instance, and not only for worst-case situations.
关 键 词: 核岭回归; 核逻辑; 正定核框架; 无穷维特征空间; 核矩阵; 原始内核; 隐式参数
课程来源: 视频讲座网公开课
最后编审: 2019-05-26:cwx
阅读次数: 88