Bandit子集选择中的信息复杂性Information Complexity in Bandit Subset Selection |
|
课程网址: | http://videolectures.net/colt2013_kaufmann_information/ |
主讲教师: | Emilie Kaufmann |
开课单位: | 国立高等电信学校 |
开课时间: | 2013-08-09 |
课程语种: | 英语 |
中文简介: | 研究了the arms of a stochastic bandit 的有效搜索问题,以确定最优子集。在PAC和固定预算公式下,利用基于kl -分歧的置信区间,得到了改进的界。在后悔设置中应用类似的思想已经产生了关于武器之间的kl发散的界限,而我们在纯探索设置中的界限涉及武器之间的Chernoff信息。除了将这一新颖的数量引入到bandits算法文学中,我们还对纯探索问题的“竞速”策略和“智能抽样”策略进行了比较,发现了支持后者的有力证据。 |
课程简介: | We consider the problem of efficiently exploring the arms of a stochastic bandit to identify the best subset. Under the PAC and the fixed-budget formulations, we derive improved bounds by using KL-divergence-based confidence intervals. Whereas the application of a similar idea in the regret setting has yielded bounds in terms of the KL-divergence between the arms, our bounds in the pure-exploration setting involve the Chernoff information between the arms. In addition to introducing this novel quantity to the bandits literature, we contribute a comparison between the “racing” and “smart sampling” strategies for pure-exploration problems, finding strong evidence in favor of the latter. |
关 键 词: | 有效搜索; 最优子集; 竞速策略; 智能抽样 |
课程来源: | 视频讲座网 |
最后编审: | 2019-10-17:cwx |
阅读次数: | 63 |