0


用于强盗调查问题的自适应众包算法

Adaptive Crowdsourcing Algorithms for the Bandit Survey Problem
课程网址: http://videolectures.net/colt2013_slivkins_problem/  
主讲教师: Aleksandrs Slivkins
开课单位: 微软公司
开课时间: 2013-08-09
课程语种: 英语
中文简介:
最近,众包已经成为分发和收集人类计算的事实上的平台,用于广泛的任务和应用,例如信息检索,自然语言处理和机器学习。目前的众包平台在质量控制领域存在一些局限性。确保高质量的大部分努力必须由必须管理达到良好结果所需的工人数量的实验者来完成。我们提出了一个简单的模型,用于众包多选任务中的自适应质量控制,我们称之为“强盗调查”问题”。该模型与众所周知的多臂匪徒问题有关但在技术上不同。我们针对这个问题提出了几种算法,并通过分析和模拟来支持它们。我们的方法基于我们对大型商业搜索引擎进行相关性评估的经验。
课程简介: Very recently crowdsourcing has become the de facto platform for distributing and collecting human computation for a wide range of tasks and applications such as information retrieval, natural language processing and machine learning. Current crowdsourcing platforms have some limitations in the area of quality control. Most of the effort to ensure good quality has to be done by the experimenter who has to manage the number of workers needed to reach good results.We propose a simple model for adaptive quality control in crowdsourced multiple-choice tasks which we call the “bandit survey problem”. This model is related to, but technically different from the well-known multi-armed bandit problem. We present several algorithms for this problem, and support them with analysis and simulations.Our approach is based in our experience conducting relevance evaluation for a large commercial search engine.
关 键 词: 众包; 强盗调查; 搜索引擎
课程来源: 视频讲座网
最后编审: 2020-06-08:吴雨秋(课程编辑志愿者)
阅读次数: 123