0


利用霍夫变换检测多个对象实例

On Detection of Multiple Object Instances using Hough Transforms
课程网址: http://videolectures.net/cvpr2010_barinova_odmo/  
主讲教师: Olga Barinova
开课单位: 罗蒙诺索夫莫斯科国立大学
开课时间: 2010-07-19
课程语种: 英语
中文简介:
为了检测多个感兴趣的对象,基于霍夫变换的方法使用非最大值抑制或模式寻找以便定位和区分Houghimages中的峰值。这种后处理需要调整额外的参数并且通常是脆弱的,尤其是当感兴趣的对象紧密定位时。在本文中,我们开发了一个新的概率框架,它在很多方面与Hough变换相关,分享其简单性和广泛的适用性。同时,该框架绕过了Hough图像中多峰识别的问题,并允许在不调用非最大抑制的情况下检测多个对象。启发式。结果,实验证明了直线检测的经典任务和更现代的类别(行人)检测问题的检测准确性的显着改善。
课程简介: To detect multiple objects of interest, the methods based on Hough transform use non-maxima supression or mode seeking in order to locate and to distinguish peaks in Hough images. Such postprocessing requires tuning of extra parameters and is often fragile, especially when objects of interest tend to be closely located. In the paper, we develop a new probabilistic framework that is in many ways related to Hough transform, sharing its simplicity and wide applicability. At the same time, the framework bypasses the problem of multiple peaks identification in Hough images, and permits detection of multiple objects without invoking nonmaximum suppression heuristics. As a result, the experiments demonstrate a significant improvement in detection accuracy both for the classical task of straight line detection and for a more modern category-level (pedestrian) detection problem.
关 键 词: 霍夫变换; 概率框架; 直线检测
课程来源: 视频讲座网
最后编审: 2019-03-12:lxf
阅读次数: 53