首页应用物理学
   首页光学
   首页数学
0


在无监督情况下物体检测和分割

Unsupervised Detection and Segmentation of Identical Objects
课程网址: http://videolectures.net/cvpr2010_cho_udas/  
主讲教师: Minsu Cho
开课单位: 首尔大学
开课时间: 2010-07-19
课程语种: 英语
中文简介:
我们讨论了一种无监督的物体检测和分割问题,它超越了一对一物体对应或图像之间的模型测试的传统假设。我们的方法可以直接从单个图像或一些图像中检测和分割相同的对象,而无需任何监督。为了检测和分割来自给定图像的所有对象级对应关系,提出了一种新的多层匹配生长方法,该方法从初始局部特征匹配开始,并通过层内扩展和层间合并来探索图像。它估计对象实体之间的几何关系,并建立连接匹配对象的“对象通信网络”。实验证明了我们的方法在具有挑战性的数据集上的强大性能。
课程简介: We address an unsupervised object detection and segmentation problem that goes beyond the conventional assumptions of one-to-one object correspondences or modeltest settings between images. Our method can detect and segment identical objects directly from a single image or a handful of images without any supervision. To detect and segment all the object-level correspondences from the given images, a novel multi-layer match-growing method is proposed that starts from initial local feature matches and explores the images by intra-layer expansion and inter-layer merge. It estimates geometric relations between object entities and establishes ‘object correspondence networks’ that connect matching objects. Experiments demonstrate robust performance of our method on challenging datasets.
关 键 词: 无监督; 物体检测; 分割
课程来源: 视频讲座网
最后编审: 2019-03-12:lxf
阅读次数: 72