0


这是怎么回事? 发现动态场景中的时空依赖性

What's going on? Discovering Spatio-Temporal Dependencies in Dynamic Scenes
课程网址: http://videolectures.net/cvpr2010_kuettel_wgo/  
主讲教师: Daniel Küttel
开课单位: 苏黎世联邦理工学院
开课时间: 2010-07-19
课程语种: 英语
中文简介:
我们提出了两种新颖的方法来自动学习复杂动态场景中移动代理的时间依赖性。它们允许发现时间规则,例如不同车道之间的通行权或典型的交通灯序列。为了提取它们,需要学习活动序列。当第一种方法基于学习的主题模型提取规则时,称为DDP HMM的第二模型联合学习共同发生的活动及其时间依赖性。为此,我们使用DependentDirichlet Processes来学习任意数量的无限隐马尔可夫模型。与之前的工作相反,我们建立了最先进的主题模型,允许自动推断所有参数,例如解释管理场景规则所需的HMM的最佳数量。 Gibbs Sampling使用未标记的训练数据离线训练模型。
课程简介: We present two novel methods to automatically learn spatio-temporal dependencies of moving agents in complex dynamic scenes. They allow to discover temporal rules, such as the right of way between different lanes or typical traffic light sequences. To extract them, sequences of activities need to be learned. While the first method extracts rules based on a learned topic model, the second model called DDP-HMM jointly learns co-occurring activities and their time dependencies. To this end we employ Dependent Dirichlet Processes to learn an arbitrary number of infinite Hidden Markov Models. In contrast to previous work, we build on state-of-the-art topic models that allow to automatically infer all parameters such as the optimal number of HMMs necessary to explain the rules governing a scene. The models are trained offline by Gibbs Sampling using unlabeled training data.
关 键 词: 时间依赖性; 复杂动态场景; 隐马尔可夫模型
课程来源: 视频讲座网
最后编审: 2019-03-13:lxf
阅读次数: 108