一种新的黎曼三维物体形状分析框架A Novel Riemannian Framework for Shape Analysis of 3D Objects |
|
课程网址: | http://videolectures.net/cvpr2010_kurtek_nrfs/ |
主讲教师: | Sebastian Kurtek |
开课单位: | 佛罗里达州立大学 |
开课时间: | 2010-07-19 |
课程语种: | 英语 |
中文简介: | 在本文中,我们介绍了一种新的黎曼框架,用于参数化表面的形状分析。我们在任何两个表面之间创建一个距离函数,该函数对刚体运动,全局缩放和重新参数化不变。这是提出困难的最后一部分。我们对这个问题的解决方案有两个:(1)定义一个称为q map的特殊表示来表示每个表面,(2)我们开发一个基于梯度的算法来优化表面的不同重新参数化。第二步类似于将网格变形为固定表面以优化其放置。 (这与将给定网格视为固定的当前方法不同。)在所选择的表示下,使用L2度量,重新参数化组的操作是等距的。据我们所知,这导致参数化表面之间的第一个黎曼距离具有所有期望的不变性。我们使用一些玩具形状,具有解剖结构的真实数据和裁剪的面部表面来举例说明这个框架。我们还成功地在提议的度量下展示了这些对象的聚类和分类。 |
课程简介: | In this paper we introduce a novel Riemannian framework for shape analysis of parameterized surfaces. We derive a distance function between any two surfaces that is invariant to rigid motion, global scaling, and reparametrization. It is the last part that presents the main difficulty. Our solution to this problem is twofold: (1) we define a special representation, called a q-map, to represent each surface, and (2) we develop a gradient-based algorithm to optimize over different re-parameterizations of a surface. The second step is akin to deforming the mesh on a fixed surface to optimize its placement. (This is different from the current methods that treat the given meshes as fixed.) Under the chosen representation, with the L2 metric, the action of the re-parametrization group is by isometries. This results in, to our knowledge, the first Riemannian distance between parameterized surfaces to have all the desired invariances. We demonstrate this framework with several examples using some toy shapes, and real data with anatomical structures, and cropped facial surfaces. We also successfully demonstrate clustering and classification of these objects under the proposed metric. |
关 键 词: | 黎曼框架; 形状分析; 距离函数 |
课程来源: | 视频讲座网 |
最后编审: | 2019-03-13:chenxin |
阅读次数: | 46 |