Stochastic Control as a Non-Equilibrium Statistical Physics: Gauge Invariant Bellman EquationStochastic Control as a Non-Equilibrium Statistical Physics: Gauge Invariant Bellman Equation |
|
课程网址: | http://videolectures.net/cyberstat2012_chernyak_stochastic_contro... |
主讲教师: | Vladimir Chernyak |
开课单位: | 韦恩州立大学 |
开课时间: | 2012-10-16 |
课程语种: | 英语 |
中文简介: | 在随机控制(SC)中,最小化平均成本,包括控制成本(努力量),空间成本(人们想要系统)和目标成本(人们希望系统完成的成本) ),为系统服从强制和受控的Langevien动力学。我们概括了SC问题,增加了成本来计算动态成本,以矢量势为特征。我们提供广义规范不变Bellman Hamilton Jacobi方程的变分推导,得到最优平均成本,其中控制用电流和密度泛函表示,并讨论实例,圆周上粒子的遍历控制说明非平衡空间时间复杂度超过电流/通量。该演讲基于与M. Chertkov,J.Bierkens和H.J. Kappen的联合工作。 |
课程简介: | In Stochastic Control (SC) one minimizes average cost-to-go, consisting of the cost-of-control (amount of efforts), the cost-of-space (where one wants the system to be) and the target cost (where one wants the system to finish), for the system obeying a forced and controlled Langevien dynamics. We generalize the SC problem adding to the cost-to-go a term accounting for the cost-of dynamics, characterized by a vector potential. We provide variational derivation of the generalized gauge-invariant Bellman-Hamilton-Jacobi equation for the optimal average cost-to-go, where the control is expressed in terms of current and density functionals, and discuss examples, e.g.ergodic control of particle-on-a-circle illustrating non-equilibrium space-time complexity over current/flux. The talk is based on a joint work with M. Chertkov, J. Bierkens and H.J. Kappen. |
关 键 词: | 随机控制; 计算动态成本 |
课程来源: | 视频讲座网 |
最后编审: | 2019-03-13:lxf |
阅读次数: | 63 |