随机进化博弈中的均衡转换Equilibrium Transitions in Stochastic Evolutionary Games |
|
课程网址: | http://videolectures.net/eccs07_miekisz_ets/ |
主讲教师: | Jacek Miekisz |
开课单位: | 华沙大学 |
开课时间: | 2007-11-26 |
课程语种: | 英语 |
中文简介: | 我们分析了混合种群和随地方相互作用的空间博弈中随机动力学的长期行为。我们回顾了关于球员数量和噪声水平对纳什均衡的随机稳定性的影响的结果。为了解决许多玩家在空间游戏中的均衡选择问题,我们引入了一个集合稳定性的概念。标准随机稳定性描述了在零噪声限制内具有固定数量的玩家的系统的长期行为。相反,整体稳定性与无限数量的玩家的极限中的固定(但仍然很低)的噪声水平有关。我们提供了游戏的例子,其中当玩家数量增加或噪音水平降低时,人口在其均衡之间经历过渡。特别是,如果噪声水平低且玩家数量足够大,那么从长远来看,风险主导和帕累托有效策略可能会以任意小的概率进行。 |
课程简介: | We analyze the long-run behaviour of stochastic dynamics in well-mixed populations and in spatial games with local interactions. We review results concerning the effect of the number of players and the noise level on the stochastic stability of Nash equilibria. To address the problem of equilibrium selection in spatial games with many players, we introduce a concept of ensemble stability. The standard stochastic stability describes a long-run behaviour of systems with a fixed number of players in the zero-noise limit. On the contrary, the ensemble stability is concerned with a fixed (but nevertheless low) noise level in the limit of the infinite number of players. We present examples of games in which when the number of players increases or the noise level decreases, a population undergoes a transition between its equilibria. In particular, it may happen that a risk-dominant and Pareto-efficient strategy, which is stochastically stable, in the long run is played with an arbitrarily small probability if the noise level is low and the number of players is big enough. |
关 键 词: | 随机动力学; 标准随机稳定性; 混合种群 |
课程来源: | 视频讲座网 |
最后编审: | 2019-03-19:lxf |
阅读次数: | 84 |