0


预测一场比赛的结果

Predicting the Outcome of a Game
课程网址: http://videolectures.net/eccs07_wolpert_pog/  
主讲教师: David Wolpert
开课单位: 美国宇航局
开课时间: 2007-11-26
课程语种: 英语
中文简介:
许多复杂系统的优化往往被看作是一个黑盒优化问题。由于各种原因,例如没有导数、混合数据类型等,使用传统技术通常很难解决这些问题。诸如遗传算法、分布估计算法(如模拟法和CE法)等技术,以及最近一些数学上严谨的方法(如概率集合法)已被用于黑盒优化。事实证明,这些技术中的许多都属于蒙特卡罗优化的范畴。在此技术中,我们对蒙特卡罗优化(MCO)进行了简要的统计分析,结果表明它与参数机器学习(PL)是一致的。由于这种特性,我们可以使用PL技术来提高MCO的性能。在此基础上,提出了一种新的概率集合黑盒优化方法。,并演示如何使用PL技术改进其优化性能。
课程简介: Optimization of many complex systems is often viewed as a black-box optimization problem. Such problems are often difficult to solve using conventional techniques, for a variety of reasons, such as the absence of derivatives, mixed data types, and so on. Techniques such as Genetic Algorithms, Estimation of Distribution Algorithms such as MIMIC and the CE method, and more recently, mathematically rigorous approaches such as Probability Collectives have been used for black-box optimization. It turns out that many of these techniques fall under the category of Monte Carlo Optimization. In this technique, we present a brief statistical analysis of Monte Carlo Optimization (MCO), and show that it is identical to Parametric Machine Learning (PL). Owing to this identity, we can use PL techniques to improve the performance of MCO. Then, we present a new version of the black-box optimization technique of Probability Collectives., and demonstrate the use of PL techniques to improve its optimization performance.
关 键 词: 蒙特卡罗优化; 黑盒优化; 混合数据类型; 遗传算法; 分布估计算法
课程来源: 视频讲座网
最后编审: 2020-09-17:chenxin
阅读次数: 83