混合神经元选择性在执行上下文相关任务的循环神经网络中非常重要Mixed neuronal selectivity is important in recurrent neural networks implementing context dependent tasks |
|
课程网址: | http://videolectures.net/eccs08_rigotti_mnsiiirn/ |
主讲教师: | Mattia Rigotti |
开课单位: | 哥伦比亚大学 |
开课时间: | 2008-10-17 |
课程语种: | 英语 |
中文简介: | 高阶动物表现出根据环境灵活地适应其行为的显着能力。复杂认知任务的执行可以被建模为心理状态之间的一系列事件驱动的转换,每个转换编码对行为的特定处置或特定的感觉运动决策。在这项工作中,我们假设这些心理状态是通过循环电路动力学以神经活动的稳定吸引子的形式在神经元上实例化的。我们表明,只有当神经元对内部心理状态和感觉刺激的组合具有选择性时,才能满足吸引子和事件驱动转换的数学条件。产生这种混合选择性的一种可能方式是引入其传入连接具有随机突触强度的神经元。该方法具有至少三个非常期望的特征。首先,尽管具有混合选择性的可能神经元的组合爆炸,所需的随机连接的神经元的数量仅与相关任务事件和上下文的数量线性地增长,这使得合理大小的网络能够执行极其复杂的认知任务。其次,模拟拟议网络的神经元的发射模式,捕获在前额叶皮层和涉及复杂认知过程的其他脑区记录的活动的几个方面。在没有事件,规则选择性和高度异构的情况下,活动是自我维持的。第三,随机连接的神经元的引入加速了学习算法的收敛,并且可以利用它来快速学习复杂的行为任务。总之,我们认为在生物大脑中广泛观察到的混合选择性可以是执行复杂认知任务的重要且通用的功能原则。 |
课程简介: | Higher order animals show the remarkable ability to flexibly adapt their behavior according to the context. The execution of complex cognitive tasks can be modeled as a series of event driven transitions between mental states, each encoding a certain disposition to behavior or a specific sensori-motor decision. In this work, we hypothesize that these mental states are instantiated neuronally by recurrent circuit dynamics, in the form of stable attractors of the neural activity. We show that the mathematical conditions for the attractors and the event driven transitions can be satisfied only if neurons are selective to combinations of internal mental states and sensory stimuli. One possible way to generate such mixed selectivity is to introduce neurons whose afferent connections have random synaptic strengths. This approach has at least three highly desirable features. First, in spite of the combinatorial explosion of possible neurons with mixed selectivity, the number of needed randomly connected neurons grows only linearly with the number of relevant task events and contexts, which makes a reasonably sized network able to execute extremely complex cognitive tasks. Second, the firing patterns of neurons of the simulated proposed network, capture several aspects of the activity recorded in prefrontal cortex and other brain areas involved in a complex cognitive processes. The activity is self-sustaining in the absence of events, rule selective, and highly heterogeneous. Third, the introduction of randomly connected neurons accelerates the convergence of learning algorithms and it can be exploited to rapidly learn complex behavioral tasks. In conclusion we think that mixed selectivity, so widely observed in the living brain, can be an important and general functional principle for executing complex cognitive tasks. |
关 键 词: | 循环电路动力学; 神经活动; 神经元 |
课程来源: | 视频讲座网 |
最后编审: | 2021-01-31:nkq |
阅读次数: | 140 |