一种用于光流评估的自然主义开源电影A Naturalistic Open Source Movie for Optical Flow Evaluation |
|
课程网址: | http://videolectures.net/eccv2012_butler_optical/ |
主讲教师: | Daniel J. Butler, Bernt Schiele, David Forsyth |
开课单位: | 华盛顿大学 |
开课时间: | 2012-11-12 |
课程语种: | 英语 |
中文简介: | 在具有自然运动的真实场景中难以测量地面实况光流。结果,光流数据集在尺寸,复杂性和多样性方面受到限制,使得光流算法难以训练和测试实际数据。我们介绍了一种源自开源3D动画短片Sintel的新光流数据集。该数据集具有流行的米德尔伯里流量评估中不存在的重要特征:长序列,大运动,镜面反射,运动模糊,散焦模糊和大气效应。因为生成电影的图形数据是开源的,所以我们能够在不同复杂度的条件下渲染场景,以评估现有流算法失败的位置。我们评估了几种最近的光流算法,并发现目前在Middlebury评估中排名很高的方法难以处理这种更复杂的数据集,这表明需要进一步研究光流估计。为了验证合成数据的使用,我们将Sintel的图像和流量统计数据与真实电影和视频的数据进行了比较,并显示它们是相似的。数据集,指标和评估网站是公开的。 |
课程简介: | Ground truth optical flow is difficult to measure in real scenes with natural motion. As a result, optical flow data sets are restricted in terms of size, complexity, and diversity, making optical flow algorithms difficult to train and test on realistic data. We introduce a new optical flow data set derived from the open source 3D animated short film Sintel. This data set has important features not present in the popular Middlebury flow evaluation: long sequences, large motions, specular reflections, motion blur, defocus blur, and atmospheric effects. Because the graphics data that generated the movie is open source, we are able to render scenes under conditions of varying complexity to evaluate where existing flow algorithms fail. We evaluate several recent optical flow algorithms and find that current highly-ranked methods on the Middlebury evaluation have difficulty with this more complex data set suggesting further research on optical flow estimation is needed. To validate the use of synthetic data, we compare the image- and flow-statistics of Sintel to those of real films and videos and show that they are similar. The data set, metrics, and evaluation website are publicly available. |
关 键 词: | 光流数据集; 光流算法; 图形数据 |
课程来源: | 视频讲座网 |
最后编审: | 2019-03-20:lxf |
阅读次数: | 153 |