0


低秩集成双线性分类器的有效优化

Efficient Optimization For Low-Rank Integrated Bilinear Classifiers
课程网址: http://videolectures.net/eccv2012_kobayashi_optimization/  
主讲教师: Andrea Vedaldi, Michal Irani, Takumi Kobayashi
开课单位: 国家先进工业科学技术研究所
开课时间: 2012-11-12
课程语种: 英语
中文简介:
在模式分类中,需要有效地处理双向数据(特征矩阵),同时保留双向结构,例如空间时间关系等。特征矩阵的分类器通常由多个双线性形式表示,其产生矩阵。从泛化性能和计算成本的观点来看,矩阵的秩,即双线性形式的数量应该是低的。为此,我们提出了一种基于有效优化的低秩双线性分类器。在所提出的方法中,通过最小化分类器(矩阵)的跟踪范数来优化分类器,这有助于有效分类器的秩减少而对秩没有任何硬约束。我们以易处理的凸形式形成优化问题,并提出用全局最优解有效解决它的过程。此外,通过考虑基于内核的双线性方法的扩展,我们引入了一种新的多核学习(MKL),称为异构MKL。该方法使用双线性模型以统一的方式将异构类型的特征之间的内核和同构特征内的普通内核组合成新的判别内核。在使用特征数组,共生特征矩阵和多核的各种分类问题的实验中,与其他方法相比,所提出的方法表现出有利的性能。
课程简介: In pattern classification, it is needed to efficiently treat two-way data (feature matrices) while preserving the two-way structure such as spatio-temporal relationships, etc. The classifier for the feature matrix is generally formulated by multiple bilinear forms which result in a matrix. The rank of the matrix, i.e., the number of bilinear forms, should be low from the viewpoint of generalization performance and computational cost. For that purpose, we propose a low-rank bilinear classifier based on the efficient optimization. In the proposed method, the classifier is optimized by minimizing the trace norm of the classifier (matrix), which contributes to the rank reduction for an efficient classifier without any hard constraint on the rank. We formulate the optimization problem in a tractable convex form and propose the procedure to solve it efficiently with the global optimum. In addition, by considering a kernel-based extension of the bilinear method, we induce a novel multiple kernel learning (MKL), called heterogeneous MKL. The method combines both inter kernels between heterogeneous types of features and the ordinary kernels within homogeneous features into a new discriminative kernel in a unified manner using the bilinear model. In the experiments on various classification problems using feature arrays, co-occurrence feature matrices, and multiple kernels, the proposed method exhibits favorable performances compared to the other methods.
关 键 词: 特征矩阵; 双线性; 泛化性能
课程来源: 视频讲座网
最后编审: 2019-03-23:lxf
阅读次数: 73