0


分类器反馈属性

Attributes for classifier feedback
课程网址: http://videolectures.net/eccv2012_parikh_attributes/  
主讲教师: Stefan Carlsson, Antonio Torralba, Devi Parikh
开课单位: 佐治亚理工学院
开课时间: 2012-11-12
课程语种: 英语
中文简介:
传统的主动学习允许(机器)学习者向(人类)教师查询其发现令人困惑的示例上的标签。然后,教师仅为该实例提供标签。这是非常严格的。在本文中,我们提出了一种学习范式,其中学习者将其关于主动选择的例子的信念(即预测标签)传达给教师。然后,教师确认或拒绝预测的标签。更重要的是,如果被拒绝,教师会传达解释为什么学习者的信念是错误的。该解释允许学习者将由教师提供的反馈传播到许多未标记的图像。这允许分类器更好地从其错误中学习,导致即使用很少的标记图像也加速对视觉概念的辨别性学习。为了使这种通信可行,拥有人类主管和机器学习者都能理解的语言至关重要。属性正好提供了这个渠道。它们是人类可解释的中级视觉概念,可跨类别共享,例如我们提倡使用管理员的属性来向分类器提供反馈,并直接传达他对世界的了解。我们采用直接的方法将这种反馈结合到分类器中,并展示其在各种视觉识别场景(如图像分类和注释)上的强大功能。用于提供分类器反馈的属性的这种应用是非常强大的,并且在社区中尚未被探索。它引入了一种新的监督模式,为未来的研究开辟了几条途径。
课程简介: Traditional active learning allows a (machine) learner to query the (human) teacher for labels on examples it finds confusing. The teacher then provides a label for only that instance. This is quite restrictive. In this paper, we propose a learning paradigm in which the learner communicates its belief (i.e. predicted label) about the actively chosen example to the teacher. The teacher then confirms or rejects the predicted label. More importantly, if rejected, the teacher communicates an explanation for why the learner's belief was wrong. This explanation allows the learner to propagate the feedback provided by the teacher to many unlabeled images. This allows a classifier to better learn from its mistakes, leading to accelerated discriminative learning of visual concepts even with few labeled images. In order for such communication to be feasible, it is crucial to have a language that both the human supervisor and the machine learner understand. Attributes provide precisely this channel. They are human-interpretable mid-level visual concepts shareable across categories e.g. furry , spacious , etc. We advocate the use of attributes for a supervisor to provide feedback to a classifier and directly communicate his knowledge of the world. We employ a straightforward approach to incorporate this feedback in the classifier, and demonstrate its power on a variety of visual recognition scenarios such as image classification and annotation. This application of attributes for providing classifiers feedback is very powerful, and has not been explored in the community. It introduces a new mode of supervision, and opens up several avenues for future research.
关 键 词: 学习范式; 机器学习; 分类器
课程来源: 视频讲座网
最后编审: 2019-03-23:lxf
阅读次数: 48