基于属性和比较属性的约束半监督学习Constrained Semi-Supervised Learning using Attributes and Comparative Attributes |
|
课程网址: | http://videolectures.net/eccv2012_shrivastava_attributes/ |
主讲教师: | Stefan Carlsson, Antonio Torralba, Abhinav Shrivastava |
开课单位: | 卡内基梅隆大学 |
开课时间: | 2012-11-12 |
课程语种: | 英语 |
中文简介: | 我们考虑用于场景分类的半监督引导学习的问题。现有的半监督方法通常是不可靠的并且面临语义漂移,因为学习任务受到约束。这主要是因为它们忽略了场景类别之间经常存在的强烈交互,例如跨类别共享的公共属性以及使一个场景与另一个场景不同的属性。本文的目的是利用这些关系并约束半监督学习问题。例如,图像是礼堂的知识可以通过强制限制圆形剧场图像应该具有比礼堂图像更多的圆形结构来改善圆形剧场的标记。我们提出了基于互斥,二元属性和比较属性的约束,并表明它们有助于我们约束学习问题并避免语义漂移。我们通过大量实验证明了我们方法的有效性,包括对一百万幅图像的非常大的数据集的结果。 |
课程简介: | We consider the problem of semi-supervised bootstrap learning for scene categorization. Existing semi-supervised approaches are typically unreliable and face semantic drift because the learning task is under-constrained. This is primarily because they ignore the strong interactions that often exist between scene categories, such as the common attributes shared across categories as well as the attributes which make one scene different from another. The goal of this paper is to exploit these relationships and constrain the semi-supervised learning problem. For example, the knowledge that an image is an auditorium can improve labeling of amphitheaters by enforcing constraint that an amphitheater image should have more circular structures than an auditorium image. We propose constraints based on mutual exclusion, binary attributes and comparative attributes and show that they help us to constrain the learning problem and avoid semantic drift. We demonstrate the effectiveness of our approach through extensive experiments, including results on a very large dataset of one million images. |
关 键 词: | 场景分类; 半监督引导学习; 语义漂移 |
课程来源: | 视频讲座网 |
最后编审: | 2020-06-22:chenxin |
阅读次数: | 84 |