0


基于滤波器的高阶项和产品标签空间随机域均值场推断

Filter-based Mean-Field Inference for Random Fields with Higher Order Terms and Product Label-Spaces
课程网址: http://videolectures.net/eccv2012_vineet_filter/  
主讲教师: Laurent Itti, Vibhav Vineet, Ramin Zabih
开课单位: 牛津布鲁克斯大学
开课时间: 2012-11-12
课程语种: 英语
中文简介:
最近,已经提出了许多交叉双边滤波方法来解决计算机视觉中的多标签问题,例如立体声,光流和对象类分割,其显示出比先前方法快一个数量级的改进。尽管使用仅具有一元和/或成对项的模型,这些方法已经取得了良好的结果。但是,之前的工作已经证明了使用具有更高阶项的模型的价值,例如表示大区域的标签一致性或全局共现关系。我们展示了如何制定这些更高阶的术语,使得基于过滤的推理仍然可行。我们演示了关于联合立体和对象标记问题以及对象类分割的技术,此外还显示了联合对象立体标记,我们的方法如何提供一种有效的产品标签空间推理方法。我们表明,在竞争图形切割/移动制作方法方面,我们能够在这些模型中加速推理约10 30次,并在所有情况下保持或提高准确性。我们在PascalVOC 10上显示对象类分割的结果,而Leuven用于联合对象立体标记。
课程简介: Recently, a number of cross bilateral filtering methods have been proposed for solving multi-label problems in computer vision, such as stereo, optical flow and object class segmentation that show an order of magnitude improvement in speed over previous methods. These methods have achieved good results despite using models with only unary and/or pairwise terms. However, previous work has shown the value of using models with higher-order terms e.g. to represent label consistency over large regions, or global co-occurrence relations. We show how these higher-order terms can be formulated such that filter-based inference remains possible. We demonstrate our techniques on joint stereo and object labeling problems, as well as object class segmentation, showing in addition for joint object-stereo labeling how our method provides an efficient approach to inference in product label-spaces. We show that we are able to speed up inference in these models around 10-30 times with respect to competing graph-cut/move-making methods, as well as maintaining or improving accuracy in all cases. We show results on PascalVOC-10 for object class segmentation, and Leuven for joint object-stereo labeling.
关 键 词: 交叉双边滤波; 计算机视觉; 多标签问题
课程来源: 视频讲座网
最后编审: 2019-03-23:lxf
阅读次数: 36