一种基于上下文感知的自适应数据流挖掘体系结构An architecture for context-aware adaptive data stream mining |
|
课程网址: | http://videolectures.net/ecml07_mohamed_acac/ |
主讲教师: | Mohamed Medhat Gaber |
开课单位: | 蒙纳士大学 |
开课时间: | 2008-01-29 |
课程语种: | 英语 |
中文简介: | 在资源受限的设备中,数据流处理适应数据速率的变化,资源的可用性和环境变化对于运行应用程序的一致性和连续性至关重要。作为数据流挖掘研究的新维度,上下文感知适应增强并优化了分布式数据流处理任务。上下文感知是普适计算的关键方面之一,因为应用程序成功的操作依赖于检测变化并相应地进行调整。本文介绍了一种用于数据流的上下文感知自适应挖掘的通用体系结构,旨在根据分布式和异构计算环境中的上下文和资源可用性的变化动态地和自动地调整数据流挖掘参数。 |
课程简介: | In resource-constrained devices, adaptation of data stream processing to variations of data rates, availability of resources and environment changes is crucial for consistency and continuity of running applications. Context-aware adaptation, as a new dimension of research in data stream mining, enhances and optimizes distributed data stream processing tasks. Context-awareness is one of the key aspects of ubiquitous computing as applicationsC¸ successful operations rely on detecting changes and adjusting accordingly. This paper presents a general architecture for context-aware adaptive mining of data streams that aims to dynamically and autonomously adjust data stream mining parameters according to changes in context and resource availability in distributed and heterogeneous computing environments. |
关 键 词: | 数据流; 普适计算; 异构计算 |
课程来源: | 视频讲座网 |
最后编审: | 2019-03-23:lxf |
阅读次数: | 50 |