首页概率论
   首页组合数学
   首页函数论
0


密度估计与类概率相结合的一类分类

One-class Classification by Combining Density and Class Probability Estimation
课程网址: http://videolectures.net/ecmlpkdd08_hempstalk_ocbc/  
主讲教师: Kathryn Hempstalk, Eibe Frank, Ian H. Witten
开课单位: 怀卡托大学
开课时间: 2008-10-10
课程语种: 英语
中文简介:
一类分类具有重要的应用,例如异常值和新颖性检测。通常使用密度估计技术或通过使标准分类算法适应于划出描述目标数据的位置的决策边界的问题来解决它。在本文中,我们研究了一种用于一类分类的简单方法,该方法将用于形成参考分布的密度估计器的应用与用于类概率估计的标准模型的归纳相结合。在该方法中,参考分布用于生成用于形成第二人工类的人工数据。与目标类相结合,这个人工类是标准两类学习问题的基础。我们解释了如何将参考分布的密度函数与以这种方式获得的类概率估计相结合,以形成目标类的密度函数的调整估计。使用UCI数据集和来自打字员识别问题的数据,我们表明,由密度估计器和类概率估计器组成的组合模型可以在用于一个类别分类时单独使用任一组件技术。我们还使用支持向量机将该方法与一类分类进行比较。
课程简介: One-class classification has important applications such as outlier and novelty detection. It is commonly tackled using density estimation techniques or by adapting a standard classification algorithm to the problem of carving out a decision boundary that describes the location of the target data. In this paper we investigate a simple method for one-class classification that combines the application of a density estimator, used to form a reference distribution, with the induction of a standard model for class probability estimation. In this method, the reference distribution is used to generate artificial data that is employed to form a second, artificial class. In conjunction with the target class, this artificial class is the basis for a standard two-class learning problem. We explain how the density function of the reference distribution can be combined with the class probability estimates obtained in this way to form an adjusted estimate of the density function of the target class. Using UCI datasets, and data from a typist recognition problem, we show that the combined model, consisting of both a density estimator and a class probability estimator, can improve on using either component technique alone when used for one-class classification. We also compare the method to one-class classification using support vector machines.
关 键 词: 异常值; 密度估计技术; 标准分类算法
课程来源: 视频讲座网
最后编审: 2019-03-23:lxf
阅读次数: 82