0


密度水平集的特征选择

Feature Selection for Density Level-Sets
课程网址: http://videolectures.net/ecmlpkdd09_brefeld_fsdls/  
主讲教师: Ulf Brefeld
开课单位: 莱芬娜大学
开课时间: 2009-10-20
课程语种: 英语
中文简介:
密度水平集估计中的一个常见问题是选择正确的特征,这些特征产生了观察数据的紧凑和简洁的表示。我们提出了一种用于密度水平集估计的有效特征选择方法,其中同时确定最佳核混合系数和模型参数。我们的方法推广了一类支持向量机,可以等效地表示为半无限线性程序,可以用交错切割平面算法求解。对网络入侵检测和对象识别任务的新方法的实验评估表明,我们的方法不仅可以获得竞争性的性能,而且可以使从业人员免于使用特征集的先验决策。
课程简介: A frequent problem in density level-set estimation is the choice of the right features that give rise to compact and concise representations of the observed data. We present an efficient feature selection method for density level-set estimation where optimal kernel mixing coefficients and model parameters are determined simultaneously. Our approach generalizes one-class support vector machines and can be equivalently expressed as a semi-infinite linear program that can be solved with interleaved cutting plane algorithms. The experimental evaluation of the new method on network intrusion detection and object recognition tasks demonstrate that our approach not only attains competitive performance but also spares practitioners from a priori decisions on feature sets to be used.
关 键 词: 密度水平集; 最佳核混合系数; 模型参数
课程来源: 视频讲座网
最后编审: 2019-03-24:cwx
阅读次数: 64