0


具有半监督特征集成学习的音频类型分类

Audio Genre Classification with Semi-Supervised Feature Ensemble Learning
课程网址: http://videolectures.net/ecmlpkdd09_cataltepe_agcssfel/  
主讲教师: Zehra Cataltepe
开课单位: 伊斯坦布尔技术大学
开课时间: 2009-10-20
课程语种: 英语
中文简介:
音乐的广泛可用性和使用使得自动音频类型分类成为一个重要的研究领域。特别提到特征提取系统,不仅是音乐数据,而且它们的特征也已经变得容易获得。然而,大量音乐数据的手工标记是耗时的。在本研究中,我们引入了用于音频分类的半监督随机特征集合方法,其使用标记和未标记的数据一起用于更好的类型分类。为了具有相关和非冗余的特征的多个子集,我们引入了Prob mRMR(概率最小冗余最大相关性)特征选择算法。 ProbmRMRs基于Ding和Peng 2003的mRMR,并根据相关性和冗余度量来概率地选择特征。实验结果表明,使用Prob mRMR特征子集的分类器集合优于Co训练和使用随机特征子集的RASCO(Co训练的随机子空间方法,Wang 2008)。
课程简介: Widespread availability and use of music have made automated audio genre classification an important field of research. Thanks to feature extraction systems, not only music data, but also features for them have become readily available. However, handlabeling of a large amount of music data is time consuming. In this study, we introduce a semi-supervised random feature ensemble method for audio classification which uses labeled and unlabeled data together for better genre classification. In order to have diverse subsets of features which are both relevant and non-redundant within themselves, we introduce the Prob-mRMR (Probabilistic minimum Redundancy Maximum Relevance) feature selection algorithm. ProbmRMR is based on mRMR of Ding and Peng 2003 and it selects the features probabilistically according to relevance and redundancy measures. Experimental results show that ensembles of classifiers using Prob-mRMR feature subsets outperform both Co-training and RASCO (Random Subspace Method for Co-training, Wang 2008) which uses random feature subsets.
关 键 词: 自动音频; 特征提取系统; 半监督随机特征
课程来源: 视频讲座网
最后编审: 2019-03-24:cwx
阅读次数: 98