0


基于实例学习与逻辑回归相结合的多标签分类方法

Combining Instance-Based Learning and Logistic Regression for Multi-Label Classification
课程网址: http://videolectures.net/ecmlpkdd09_cheng_cibl/  
主讲教师: Weiwei Cheng
开课单位: 菲利普森马尔堡大学
开课时间: 2009-10-20
课程语种: 英语
中文简介:
多标签分类是传统分类的扩展,其中单个实例可以与多个标签相关联。最近的研究表明,就像传统分类一样,依赖于最近邻估计原理的基于实例的学习算法可以在这种情况下非常成功地使用。然而,由于迄今为止现有的算法不考虑标签之间的相关性和相互依赖性,因此它们的潜力尚未被充分利用。在本文中,我们提出了一种新的多标签分类方法,该方法基于一个统一基于实例的学习和逻辑回归的框架,包括两种方法作为特殊情况。该方法允许人们捕获标签之间的相互依赖性,并且还结合基于模型和基于相似性的推断用于多标签分类。正如实验研究所示,我们的方法能够根据多标签预测的若干评估标准提高预测准确性。
课程简介: Multilabel classification is an extension of conventional classification in which a single instance can be associated with multiple labels. Recent research has shown that, just like for conventional classification, instance-based learning algorithms relying on the nearest neighbor estimation principle can be used quite successfully in this context. However, since hitherto existing algorithms do not take correlations and interdependencies between labels into account, their potential has not yet been fully exploited. In this paper, we propose a new approach to multilabel classification, which is based on a framework that unifies instance-based learning and logistic regression, comprising both methods as special cases. This approach allows one to capture interdependencies between labels and, moreover, to combine model-based and similarity-based inference for multilabel classification. As will be shown by experimental studies, our approach is able to improve predictive accuracy in terms of several evaluation criteria for multilabel prediction.
关 键 词: 多标签分类; 最近邻估计原理; 逻辑回归
课程来源: 视频讲座网
最后编审: 2019-03-24:cwx
阅读次数: 86