0


基于局部结构相似性的网络内分类

Within-Network Classification Using Local Structure Similarity
课程网址: http://videolectures.net/ecmlpkdd09_desrosiers_wncu/  
主讲教师: Christian Desrosiers
开课单位: 蒙特利尔综合理工学院
开课时间: 2009-10-20
课程语种: 英语
中文简介:
在网络分类中,目标是对部分标记的网络的节点进行分类,是一种半监督学习问题,其在若干重要领域中具有应用,例如图像处理,文档分类和恶意活动的检测。虽然针对该问题的大多数方法基于链接或附近节点可能具有相同标签的假设共同推断缺失标签,但是存在许多类型的网络,该假设失败,例如,分子图,交易网络等。在本文中,我们提出了一种基于松弛标记的集体分类方法,该方法使用其局部结构对网络的实体进行分类。该方法使用边缘化相似性内核,该内核将两个节点的本地结构与网络中的随机遍历进行比较。通过对不同数据集的实验,我们展示了比这个问题的几种最先进方法更准确的方法。
课程简介: Within-network classification, where the goal is to classify the nodes of a partly labeled network, is a semi-supervised learning problem that has applications in several important domains like image processing, the classification of documents, and the detection of malicious activities. While most methods for this problem infer the missing labels collectively based on the hypothesis that linked or nearby nodes are likely to have the same labels, there are many types of networks for which this assumption fails, e.g., molecular graphs, trading networks, etc. In this paper, we present a collective classification method, based on relaxation labeling, that classifies entities of a network using their local structure. This method uses a marginalized similarity kernel that compares the local structure of two nodes with random walks in the network. Through experimentation on different datasets, we show our method to be more accurate than several state-of-the-art approaches for this problem.
关 键 词: 网络节点; 半监督学习; 缺失标签
课程来源: 视频讲座网
最后编审: 2019-03-24:cwx
阅读次数: 70