首页艺术学
   首页社会学
   首页统计学
0


复调音乐分类的旋律模型

Melodic Models for Polyphonic Music Classification
课程网址: http://videolectures.net/ecmlpkdd09_hillewaere_mmpmc/  
主讲教师: Ruben Hillewaere
开课单位: 布鲁塞尔大学
开课时间: 2009-10-20
课程语种: 英语
中文简介:
复调音乐的分类仍然是当前音乐数据挖掘方法的挑战。在本文中,我们探讨了在复音分类任务中专门为旋律创建的分类器的性能。在海顿和莫扎特的弦乐四重奏运动的小数据集中,旋律n克模型优于用于作曲家识别的星际全局特征模型。此外,结合了不同乐器部分的预测的简单模型优于从任何单个声音创建的模型。结果表明,考虑到复调信息的模型可以获得更高的分类精度。
课程简介: The classification of polyphonic music still presents challenges for current music data mining methods. In this paper we explore the performance of classifiers specifically created for melody on the polyphonic classification task. On a small dataset of string quartet movements of Haydn and Mozart, the melodic n-gram model outperforms the melodic global feature model for composer recognition. Furthermore, a simple model that combines the predictions made from different instrumental parts outperforms models created from any single voice. The results indicate that models taking into account polyphonic information achieve higher classification accuracy.
关 键 词: 复调音乐; 分类器; 小数据集中
课程来源: 视频讲座网
最后编审: 2019-03-24:cwx
阅读次数: 103