0


基于n元分割的无参数层次共聚类

Parameter-Free Hierarchical Co-Clustering by n-Ary Splits
课程网址: http://videolectures.net/ecmlpkdd09_ienco_pfhccas/  
主讲教师: Dino Ienco
开课单位: 都灵大学
开课时间: 2009-10-20
课程语种: 英语
中文简介:
聚类高维数据具有挑战性。经典指标无法识别对象之间的真实相似性。此外,大量的功能使集群解释变得困难。为了解决这些问题,已经提出了几种共聚类方法,其试图同时计算对象的分区和特征的分区。不幸的是,这些方法仅识别预定数量的平坦群集。相反,如果集群以分层方式排列是有用的,因为层次结构提供了集群的内部。在本文中,我们提出了一种新颖的分层协同集群,它构建了两个耦合层次结构,一个在对象上,一个在特征上,从而提供对他们的见解。我们的方法不需要预先指定数量的簇,并产生紧凑的层次结构,因为它会进行分裂,其中ro是自动确定的。我们使用最先进的竞争对手验证了我们在几个高维数据集上的方法。
课程简介: Clustering high-dimensional data is challenging. Classic metrics fail in identifying real similarities between objects. Moreover, the huge number of features makes the cluster interpretation hard. To tackle these problems, several co-clustering approaches have been proposed which try to compute a partition of objects and a partition of features simultaneously. Unfortunately, these approaches identify only a predefined number of flat co-clusters. Instead, it is useful if the clusters are arranged in a hierarchical fashion because the hierarchy provides insides on the clusters.In this paper we propose a novel hierarchical co-clustering, which builds two coupled hierarchies, one on the objects and one on features thus providing insights on both them. Our approach does not require a pre-specified number of clusters, and produces compact hierarchies because it makes ro-ary splits, where ro is automatically determined. We validate our approach on several high-dimensional datasets with state of the art competitors.
关 键 词: 聚类高维数据; 经典指标; 集群解释
课程来源: 视频讲座网
最后编审: 2019-03-24:cwx
阅读次数: 65