0


MAC:多属性协同集群信息

MACs: Multi-Attribute Co-Clusters with High Correlation Information
课程网址: http://videolectures.net/ecmlpkdd09_sim_macmacchci/  
主讲教师: Kelvin Sim
开课单位: 信息通信研究所
开课时间: 2009-10-20
课程语种: 英语
中文简介:
在分析两组不同实体之间的相关性的许多现实世界应用中,每组实体可以由多个属性表征。因此,需要将多个属性的值聚合成高度相关的簇对。我们将这种协同聚类问题表示为多属性协同聚类问题。在本文中,我们介绍了两个属性之间的互信息到两个属性集之间的互信息的概括。通用公式使我们能够使用相关信息来发现多属性协同集群(MAC)。我们开发了一种新的算法MACminer来挖掘具有来自数据集的高相关性信息的MAC。我们在具有多个属性的数据集中证明了MACminer的挖掘效率,并且与通过替代高维数据聚类和模式挖掘技术生成的MAC相比,表明具有高相关性信息的MAC具有更高的分类和预测能力。
课程简介: In many real-world applications that analyze correlations between two groups of diverse entities, each group of entities can be characterized by multiple attributes. As such, there is a need to co-cluster multiple attributes’ values into pairs of highly correlated clusters. We denote this co-clustering problem as the multi-attribute co-clustering problem. In this paper, we introduce a generalization of the mutual information between two attributes into mutual information between two attribute sets. The generalized formula enables us to use correlation information to discover multi-attribute co-clusters (MACs). We develop a novel algorithm MACminer to mine MACs with high correlation information from datasets. We demonstrate the mining efficiency of MACminer in datasets with multiple attributes, and show that MACs with high correlation information have higher classification and predictive power, as compared to MACs generated by alternative high-dimensional data clustering and pattern mining techniques.
关 键 词: 聚类问题; 互信息; 挖掘效率
课程来源: 视频讲座网
最后编审: 2019-03-27:lxf
阅读次数: 80