基于强制定义因子图的实体分解和分割的双向联合推理Bi-Directional Joint Inference for Entity Resolution and Segmentation Using Imperatively-Defined Factor Graphs |
|
课程网址: | http://videolectures.net/ecmlpkdd09_singh_bdjiersuidfg/ |
主讲教师: | Sameer Singh |
开课单位: | 马萨诸塞大学 |
开课时间: | 2009-10-20 |
课程语种: | 英语 |
中文简介: | 人们越来越关注跨多个子任务使用联合推理作为避免传统管道中错误的级联累积的机制。最近的几篇论文展示了实体提及的细分与它们的重复之间的联合推理,然而,它们具有各种弱点:推理信息仅在一个方向上流动,不确定假设的数量受到严重限制,或者子任务只是松散耦合。本文提出了一种高度耦合的双向联合推理方法,该方法基于关系条件随机场中的有效马尔可夫链蒙特卡罗采样。该模型使用我们的新概率编程语言指定,该语言利用命令性构造来定义因子图结构和操作。实验结果表明,我们的方法可以显着减少错误,同时运行速度也比以前的现有技术系统快。 |
课程简介: | There has been growing interest in using joint inference across multiple subtasks as a mechanism for avoiding the cascading accumulation of errors in traditional pipelines. Several recent papers demonstrate joint inference between the segmentation of entity mentions and their de-duplication, however, they have various weaknesses: inference information flows only in one direction, the number of uncertain hypotheses is severely limited, or the subtasks are only loosely coupled. This paper presents a highly-coupled, bi-directional approach to joint inference based on efficient Markov chain Monte Carlo sampling in a relational conditional random field. The model is specified with our new probabilistic programming language that leverages imperative constructs to define factor graph structure and operation. Experimental results show that our approach provides a dramatic reduction in error while also running faster than the previous state-of-the-art system. |
关 键 词: | 联合推理; 级联累积; 双向联合推理方法 |
课程来源: | 视频讲座网 |
最后编审: | 2020-07-13:yumf |
阅读次数: | 47 |