使用多重包含准则(MIC)选择多任务特征Multi-Task Feature Selection Using the Multiple Inclusion Criterion (MIC) |
|
课程网址: | http://videolectures.net/ecmlpkdd09_talukdar_mtfsumic/ |
主讲教师: | Partha Pratim Talukdar |
开课单位: | 印度班加罗尔理工学院 |
开课时间: | 2009-10-20 |
课程语种: | 英语 |
中文简介: | 我们解决了多个相关分类或回归任务中联合特征选择的问题。在使用多个任务进行特征选择时,通常可以在这些任务中“借力”以获得更灵敏的标准来决定选择哪些特征。我们提出了一种新颖的方法,即多重包含准则(MIC),它修改了逐步特征选择,以便更容易地选择有助于跨多个任务的特征。我们的方法允许将每个功能添加到任何,部分或全部任务中。 MIC最有利于从大量潜在特征中选择一小组预测特征,这在基因组和生物数据集中很常见。对这些数据集的实验结果表明,MIC通常优于其他竞争的多任务学习方法,不仅在准确性方面,而且通过构建更简单和更可解释的模型。 |
课程简介: | We address the problem of joint feature selection in multiple related classification or regression tasks. When doing feature selection with multiple tasks, usually one can “borrow strength” across these tasks to get a more sensitive criterion for deciding which features to select. We propose a novel method, the Multiple Inclusion Criterion (MIC), which modifies stepwise feature selection to more easily select features that are helpful across multiple tasks. Our approach allows each feature to be added to none, some, or all of the tasks. MIC is most beneficial for selecting a small set of predictive features from a large pool of potential features, as is common in genomic and biological datasets. Experimental results on such datasets show that MIC usually outperforms other competing multi-task learning methods not only in terms of accuracy but also by building simpler and more interpretable models. |
关 键 词: | 回归任务; 联合特征选择; 生物数据集 |
课程来源: | 视频讲座网 |
最后编审: | 2019-03-27:lxf |
阅读次数: | 94 |