0


马尔可夫样本的鲁棒性和广义性

Robustness and Generalizability for Markovian Samples
课程网址: http://videolectures.net/ecmlpkdd09_xu_rgms/  
主讲教师: Zhao Xu
开课单位: 慕尼黑大学
开课时间: 2009-10-20
课程语种: 英语
中文简介:
我们考虑学习算法的鲁棒性并证明在非常一般的设置下,算法的鲁棒性意味着它概括,因此,渐近地最小化经验风险的鲁棒算法是一致的。特别地,这种关系适用于根据满足Doeblin条件的马尔可夫链的演化生成训练样本和测试样本的情况。我们进一步提供确保鲁棒性和因此可扩展性以及在某些情况下一致性的条件,所有这些都在Markovian设置下。两个值得注意的例子是支持向量机和Lasso。
课程简介: We consider robustness of learning algorithms and prove that under a very general setup, robustness of an algorithm implies that it generalizes, and consequently, a robust algorithm that asymptotically minimizes empirical risk is consistent. In particular, this relationship holds in the case where both training samples and testing samples are generated according to evolving of a Markovian chain satisfying the Doeblin condition. We further provide conditions that ensure robustness and hence generalizability and in some cases consistency, all under the Markovian setup. Two notable examples are support vector machines and Lasso.
关 键 词: 学习算法; 鲁棒性; 马尔可夫链
课程来源: 视频讲座网
最后编审: 2019-03-27:lxf
阅读次数: 70