利用Choquet积分学习单调非线性模型Learning Monotone Nonlinear Models using the Choquet Integral |
|
课程网址: | http://videolectures.net/ecmlpkdd2011_cheng_learning/ |
主讲教师: | Weiwei Cheng |
开课单位: | 菲利普森马尔堡大学 |
开课时间: | 2011-10-03 |
课程语种: | 英语 |
中文简介: | 保证输入变量中单调性的预测模型的学习近年来在机器学习中受到越来越多的关注。虽然对于某些类型的模型而言单调性约束的结合相当简单,但对于其他模型而言,它可能成为更复杂的问题。根据趋势,确保单调性的难度随着模型的灵活性或非线性而增加。在本文中,我们提倡将所谓的Choquet积分作为学习单调非线性模型的工具。虽然广泛用作不同领域的灵活聚集算子,例如多标准决策,但Choquet积分在机器学习中很少有人知道。除了以数学和优雅的方式结合单调性和灵活性之外,Choquet积分具有额外的特征,从机器学习的角度来看它具有吸引力。值得注意的是,它提供了量化个体预测变量的重要性和变量组之间的相互作用的措施。作为Choquet积分的具体应用,我们提出了逻辑回归的推广。我们的方法的基本思想,称为选择性回归,是取代预测变量的线性函数,它通常用于逻辑回归,以通过Choquet积分对正类的logodds进行建模。 |
课程简介: | The learning of predictive models that guarantee monotonicity in the input variables has received increasing attention in machine learning in recent years. While the incorporation of monotonicity constraints is rather simple for certain types of models, it may become a more intricate problem for others. By trend, the difficulty of ensuring monotonicity increases with the flexibility or, say, nonlinearity of a model. In this paper, we advocate the so-called Choquet integral as a tool for learning monotone nonlinear models. While being widely used as a flexible aggregation operator in different fields, such as multiple criteria decision making, the Choquet integral is much less known in machine learning so far. Apart from combining monotonicity and flexibility in a mathematically sound and elegant manner, the Choquet integral has additional features making it attractive from a machine learning point of view. Notably, it offers measures for quantifying the importance of individual predictor variables and the interaction between groups of variables. As a concrete application of the Choquet integral, we propose a generalization of logistic regression. The basic idea of our approach, referred to as choquistic regression, is to replace the linear function of predictor variables, which is commonly used in logistic regression to model the log odds of the positive class, by the Choquet integral. |
关 键 词: | 预测模型; 灵活聚集算子; 趋势 |
课程来源: | 视频讲座网 |
最后编审: | 2019-04-02:cwx |
阅读次数: | 47 |