基于流形粗粒度的在线半监督学习Manifold Coarse Graining for Online Semi-Supervised Learning |
|
课程网址: | http://videolectures.net/ecmlpkdd2011_farajtabar_learning/ |
主讲教师: | Mehrdad Farajtabar |
开课单位: | 谢里夫理工大学 |
开课时间: | 2011-11-29 |
课程语种: | 英语 |
中文简介: | 由于标签数据通常既费力又昂贵,因此许多应用中可用的标记数据相当有限。主动学习是一种学习方法,主动选择未标记的数据点作为缓解标记数据缺陷问题的方法进行标记。在本文中,我们通过提出一种新的无标签数据选择标准来扩展先前的一种称为转导实验设计(TED)的主动学习方法。我们的方法,称为判别实验设计(DED),结合了基于边缘的判别信息和数据分布信息,因此它可以被视为TED的判别扩展。我们报告了对一些基准数据集进行的实验,以证明DED的有效性。 |
课程简介: | Since labeling data is often both laborious and costly, the labeled data available in many applications is rather limited. Active learning is a learning approach which actively selects unlabeled data points to label as a way to alleviate the labeled data deficiency problem. In this paper, we extend a previous active learning method called transductive experimental design (TED) by proposing a new unlabeled data selection criterion. Our method, called discriminative experimental design (DED), incorporates both margin-based discriminative information and data distribution information and hence it can be seen as a discriminative extension of TED. We report experiments conducted on some benchmark data sets to demonstrate the effectiveness of DED. |
关 键 词: | 标签数据; 主动学习; 转导实验设计 |
课程来源: | 视频讲座网 |
最后编审: | 2019-04-02:cwx |
阅读次数: | 64 |