0


基于模型的不完全轨迹聚类方法的运动分割

Motion segmentation by a model-based clustering approach of incomplete trajectories
课程网址: http://videolectures.net/ecmlpkdd2011_karavasilis_trajectories/  
主讲教师: Vasileios Karavasilis
开课单位: 约阿尼纳大学
开课时间: 2011-11-30
课程语种: 英语
中文简介:
在本文中,我们提出了一个基于从视频中提取的图像关键点的聚类轨迹的视觉对象跟踪框架。我们的方法的主要贡献是轨迹是从视频序列中自动提取的,并且它们直接提供给基于模型的聚类方法。在大多数其他方法中,后者构成困难部分,因为所得到的特征轨迹具有短持续时间,因为关键点由于遮挡,照明,视点变化和噪声而消失并重新出现。我们在这里提出了一个稀疏的平移不变回归混合模型,用于聚类可变长度的轨迹。整个方案被转换为最大后验方法,其中期望最大化(EM)算法用于估计模型参数。所提出的方法通过将每个轨迹分配给聚类来检测输入图像序列中的不同对象,并同时提供所有对象的运动。数值结果表明,与平均移位跟踪器相比,所提方法能够提供更准确和稳健的解决方案,尤其是在遮挡情况下。
课程简介: In this paper, we present a framework for visual object tracking based on clustering trajectories of image key points extracted from a video. The main contribution of our method is that the trajectories are automatically extracted from the video sequence and they are provided directly to a model-based clustering approach. In most other methodologies, the latter constitutes a difficult part since the resulting feature trajectories have a short duration, as the key points disappear and reappear due to occlusion, illumination, viewpoint changes and noise. We present here a sparse, translation invariant regression mixture model for clustering trajectories of variable length. The overall scheme is converted into a Maximum A Posteriori approach, where the Expectation-Maximization (EM) algorithm is used for estimating the model parameters. The proposed method detects the different objects in the input image sequence by assigning each trajectory to a cluster, and simultaneously provides the motion of all objects. Numerical results demonstrate the ability of the proposed method to offer more accurate and robust solution in comparison with the mean shift tracker, especially in cases of occlusions.
关 键 词: 聚类轨迹; 视觉对象; 期望最大化
课程来源: 视频讲座网
最后编审: 2019-04-03:lxf
阅读次数: 76