0


自适应正则化器的转移学习

Transfer Learning With Adaptive Regularizers
课程网址: http://videolectures.net/ecmlpkdd2011_kloft_regularizers/  
主讲教师: Marius Kloft
开课单位: 柏林洪堡大学
开课时间: 2011-11-30
课程语种: 英语
中文简介:
使用线性模型进行分类的正则化风险最小化方法的成功关键取决于选择与手头的学习任务相匹配的正则化项。如果必要的领域专业知识很少或难以形式化,则可能很难找到一个好的正规化器。另一方面,如果有大量相关或类似的数据,则根据相关数据的特征调整新学习问题的正则化是一种自然的方法。在本文中,我们研究了为具有特征权重的l2型正则化器获得良好参数值的问题。我们通过分析研究基于矩的方法来获得良好的值,并为目标学习任务的预测误差提供统一的收敛边界。实证研究表明,该方法可以在文本分类的应用领域中显着提高预测准确性。
课程简介: The success of regularized risk minimization approaches to classification with linear models depends crucially on the selection of a regularization term that matches with the learning task at hand. If the necessary domain expertise is rare or hard to formalize, it may be difficult to find a good regularizer. On the other hand, if plenty of related or similar data is available, it is a natural approach to adjust the regularizer for the new learning problem based on the characteristics of the related data. In this paper, we study the problem of obtaining good parameter values for a l2-style regularizer with feature weights. We analytically investigate a moment-based method to obtain good values and give uniform convergence bounds for the prediction error on the target learning task. An empirical study shows that the approach can improve predictive accuracy considerably in the application domain of text classification.
关 键 词: 线性模型; 正则化; 目标学习任务
课程来源: 视频讲座网
最后编审: 2019-04-03:lxf
阅读次数: 57