用关联方法统一内疚:定理和快速算法Unifying Guilt-by-Association Approaches: Theorems and Fast Algorithms |
|
课程网址: | http://videolectures.net/ecmlpkdd2011_koutra_approaches/ |
主讲教师: | Danai Koutra |
开课单位: | 密歇根大学 |
开课时间: | 2011-11-30 |
课程语种: | 英语 |
中文简介: | 如果史密斯的几个朋友犯过小偷,你会对史密斯说些什么?如果史密斯是一个坚强的罪犯,大多数人都不会感到惊讶。通过关联方法的内疚结合弱信号来获得更强的信号,并且已被广泛用于多种设置中的异常检测和分类(例如,会计欺诈,网络安全,电话卡欺诈)。本文的重点是比较和对比几种通过关联方法非常成功,内疚:随机游走重启,半监督学习和信仰传播(BP)。我们的主要贡献有两个方面:(a)从理论上讲,我们证明所有方法都会产生类似的矩阵反演问题; (b)在实际应用中,我们开发了FaBP,这是一种快速算法,可以产生2倍的加速,等于或高于BP的精度,并保证收敛。我们使用合成和真实数据集证明了这些好处,包括YahooWeb,这是BP研究过的最大图表之一。 |
课程简介: | If several friends of Smith have committed petty thefts, what would you say about Smith? Most people would not be surprised if Smith is a hardened criminal. Guilt-by-association methods combine weak signals to derive stronger ones, and have been extensively used for anomaly detection and classification in numerous settings (e.g., accounting fraud, cyber-security, calling-card fraud). The focus of this paper is to compare and contrast several very successful, guilt-by-association methods: Random Walk with Restarts, Semi-Supervised Learning, and Belief Propagation (BP). Our main contributions are two-fold: (a) theoretically, we prove that all the methods result in a similar matrix inversion problem; (b) for practical applications, we developed FaBP, a fast algorithm that yields 2× speedup, equal or higher accuracy than BP, and is guaranteed to converge. We demonstrate these benefits using synthetic and real datasets, including YahooWeb, one of the largest graphs ever studied with BP. |
关 键 词: | 关联方法; 快速算法; 矩阵反演 |
课程来源: | 视频讲座网 |
最后编审: | 2019-04-03:lxf |
阅读次数: | 96 |