通过不断演变的流数据进行主动学习Active learning with evolving streaming data |
|
课程网址: | http://videolectures.net/ecmlpkdd2011_zliobaite_data/ |
主讲教师: | Indrė Žliobaitė |
开课单位: | 伯恩茅斯大学 |
开课时间: | 2011-11-29 |
课程语种: | 英语 |
中文简介: | 由于标记数据通常既费力又昂贵,因此在许多应用程序中可用的标记数据相当有限。主动学习是一种主动选择未标记数据点进行标记的学习方法,以缓解标记数据不足的问题。本文提出了一种新的无标记数据选择准则,扩展了已有的主动学习方法——转换实验设计(TED)。我们的方法称为判别实验设计(discriminative experimental design, ed),它结合了基于边缘的判别信息和数据分布信息,因此可以看作是TED的判别扩展。我们报告了在一些基准数据集上进行的实验,以证明数据挖掘的有效性。 |
课程简介: | Since labeling data is often both laborious and costly, the labeled data available in many applications is rather limited. Active learning is a learning approach which actively selects unlabeled data points to label as a way to alleviate the labeled data deficiency problem. In this paper, we extend a previous active learning method called transductive experimental design (TED) by proposing a new unlabeled data selection criterion. Our method, called discriminative experimental design (DED), incorporates both margin-based discriminative information and data distribution information and hence it can be seen as a discriminative extension of TED. We report experiments conducted on some benchmark data sets to demonstrate the effectiveness of DED. |
关 键 词: | 标记数据; 主动学习; 数据选择准则; 判别信息 |
课程来源: | 视频讲座网公开课 |
最后编审: | 2019-05-26:cwx |
阅读次数: | 53 |