0


使用概率模型分析文本和社交网络数据

Analyzing Text and Social Network Data with Probabilistic Models
课程网址: http://videolectures.net/ecmlpkdd2012_smyth_probabilistic_models/  
主讲教师: Padhraic Smyth
开课单位: 加州大学欧文分校
开课时间: 2012-10-29
课程语种: 英语
中文简介:
探索和理解大型文本和社交网络数据集在计算机科学、社会科学、历史、医学等多个领域越来越受到关注。本文将概述最近使用概率潜在变量模型分析此类数据的工作。潜在变量模型在数据分析中有着悠久的传统,通常假设存在简单的未观测现象来解释相对复杂的观测数据。在过去十年中,有大量工作致力于将这些方法的范围从相对较小的简单数据集扩展到更复杂的文本和网络数据。我们将讨论这些发展背后的基本概念,审查关键思想、最近的进展和悬而未决的问题。此外,我们还将强调不同方法背后的共同思想,包括(例如)在矩阵分解中工作的链接。演讲的最后部分将更具体地关注近期关于时间社交网络的工作,特别是节点之间具有时间戳的事件形式的数据(如个人之间随着时间的推移交换的电子邮件)。
课程简介: Exploring and understanding large text and social network data sets is of increasing interest across multiple fields, in computer science, social science, history, medicine, and more. This talk will present an overview of recent work using probabilistic latent variable models to analyze such data. Latent variable models have a long tradition in data analysis and typically hypothesize the existence of simple unobserved phenomena to explain relatively complex observed data. In the past decade there has been substantial work on extending the scope of these approaches from relatively small simple data sets to much more complex text and network data. We will discuss the basic concepts behind these developments, reviewing key ideas, recent advances, and open issues. In addition we will highlight common ideas that lie beneath the surface of different approaches including links (for example) to work in matrix factorization. The concluding part of the talk will focus more specifically on recent work with temporal social networks, specifically data in the form of time-stamped events between nodes (such as emails exchanged among individuals over time).
关 键 词: 社交网络数据集; 计算机科学; 概率潜在变量; 模型分析; 观测数据; 矩阵分解
课程来源: 视频讲座网公开课
最后编审: 2019-05-26:cwx
阅读次数: 51