学习数以百万计的例子和维度 - 竞赛意图Learning with Millions of Examples and Dimensions - Competition proposal |
|
课程网址: | http://videolectures.net/eml07_sonnenburg_lme/ |
主讲教师: | Sören Sonnenburg |
开课单位: | 弗劳恩霍夫智能分析与信息系统研究所 |
开课时间: | 2008-02-01 |
课程语种: | 英语 |
中文简介: | 多年来,已经在机器学习中提出了许多不同的分类方法。然而,目前很难判断哪种方法在训练时间和记忆要求以及分类性能方面最有效,这是实际相关的标准。对此困难的可能解释是在不同条件下(通常)评估方法:例如,使用不同的数据集,评估标准,模型参数和停止条件。因此,我们希望组织一场旨在公平的竞赛,并能够直接比较当前的大型分类器。为此,我们计划提供针对竞争方法的细节定制的通用评估框架,例如对于支持向量机分类器,除了测试错误记录之外,还将考虑原始问题的客观值。提供各种数据集,每个数据集都具有特定属性,如极稀疏,密集,高或低维度,我们建议根据以下数据评估方法:训练时间与测试误差,数据集大小与测试误差和数据集大小与培训时间。我们寻求社区的帮助,收集相关的大型现实世界数据集,批判性地审查和讨论公平的评估标准,并最终邀请研究人员共同组织和参与这一挑战。 |
课程简介: | Over the years many different classification methods have been proposed in machine learning. However it is currently very difficult to judge which method is the most efficient with respect to training time and memory requirements and classification performance, which are the practically relevant criteria. A possible explanation for this difficulty is that methods are (often) evaluated under different conditions: For instance different datasets, evaluation criteria, model parameters and stopping conditions are used. We would therefore like to organize a competition, that is designed to be fair and enables a direct comparison of current large scale classifiers. To this end we plan to provide a generic evaluation framework tailored to the specifics of the competing methods, for example for Support Vector Machine classifiers, one would in addition to test-error record the objective value of the primal problem. Providing a wide range of datasets, each of which having specific properties, like extremely sparse, dense, high or low dimensional, we propose to evaluate the methods based on the following figures: training time vs. test error, dataset size vs. test error and dataset size vs. training time. We seek help from the community to gather relevant large-scale real-world data sets and to critically review and discuss fair evaluation criteria and finally invite researchers to co-organize and to participate in this challenge. |
关 键 词: | 机器学习; 大型分类器; 向量机分类器 |
课程来源: | 视频讲座网 |
最后编审: | 2019-04-10:lxf |
阅读次数: | 43 |