0


将史密森尼美国艺术博物馆与关联数据云连接起来

Connecting the Smithsonian American Art Museum to the Linked Data Cloud
课程网址: http://videolectures.net/eswc2013_szekely_smithsonian_art/  
主讲教师: Pedro Szekely
开课单位: 南加州大学
开课时间: 2013-07-08
课程语种: 英语
中文简介:
世界各地的博物馆都建立了数据库,其中包含有关数百万个对象,历史,创建对象的人以及他们所代表的实体的元数据。该数据存储在专有数据库中,不易使用。最近,博物馆采用语义网作为向全世界提供这些数据的手段,但迄今为止的经验表明,将博物馆数据发布到链接数据云是很困难的:数据库庞大而复杂,信息丰富从博物馆到博物馆的结构和因人而异,很难将数据与其他数据集联系起来。本文介绍了从史密森尼美国艺术博物馆(SAAM)发布数据的过程和经验教训。我们强调数据库与RDF映射过程的复杂性,讨论我们将SAAM数据集链接到集线器数据集(如DBpedia和Getty词汇表)的经验,并介绍我们允许SAAM人员审查信息以验证其符合高标准的经验史密森学会。使用我们的工具,我们帮助SAAM发布其完整馆藏的高质量链接数据(41,000个对象和8,000位艺术家)。
课程简介: Museums around the world have built databases with meta-data about millions of objects, their history, the people who created them, and the entities they represent. This data is stored in proprietary databases and is not readily available for use. Recently, museums embraced the Semantic Web as a means to make this data available to the world, but the experience so far shows that publishing museum data to the linked data cloud is dicult: the databases are large and complex, the information is richly structured and varies from museum to museum, and it is dicult to link the data to other datasets. This paper describes the process and lessons learned in publishing the data from the Smithsonian American Art Museum (SAAM). We highlight complexities of the database-to-RDF mapping process, discuss our experience linking the SAAM dataset to hub datasets such as DBpedia and the Getty Vocabularies, and present our experience in allowing SAAM personnel to review the information to verify that it meets the high standards of the Smithsonian. Using our tools, we helped SAAM publish high-quality linked data of their complete holdings (41,000 objects and 8,000 artists).
关 键 词: 博物馆; 数据库; 语义网
课程来源: 视频讲座网
最后编审: 2019-04-14:lxf
阅读次数: 86