0


信息几何在雷达信号处理中的应用

Applications of Information Geometry to Radar Signal Processing
课程网址: http://videolectures.net/etvc08_barbaresco_aoigt/  
主讲教师: Frédéric Barbaresco
开课单位: 雷达开发单位
开课时间: 2008-12-05
课程语种: 英语
中文简介:
高分辨率多普勒成像的主要问题涉及传感器数据时间序列的Toeplitz Hermitian正定协方差矩阵的稳健统计估计(例如,在多普勒回波描记术中,在水下声学中,在电磁雷达中,在脉冲激光雷达中)。我们在黎曼对称空间和信息几何框架的框架下共同考虑这个问题。两种方法都导致相同的度量,最初在其他数学领域中被考虑(研究Bruhat Tits完整度量空间和辛几何上半部Siegel空间)。基于Bruchet Tits空间中的Frechet Karcher重心定义和测地线,我们解决了N个协方差矩阵的平均估计问题。我们的主要贡献在于这种复杂自回归模型理论的发展(多普勒频谱分析的最大熵解)。 Toeplitz Hermitian协方差矩阵的特定块结构用于定义Siegel度量计算的迭代和并行算法。基于仿射信息几何理论,我们引入了复数自回归模型,基于多普勒信号熵给出的Kohler势函数的反射系数的Kohler度量。该度量与科勒爱因斯坦流形和复数Monge安培方程密切相关。最后,我们研究了科勒潜力空间中的测地线以及Calabi&Kohler Ricci几何流动对这种复杂自回归度量的作用。我们得出结论,在HF和X波段的真实多普勒雷达数据上获得了不同的结果:尾波X湍流的X波段雷达监测,沿海X波段和HF表面波雷达的探测。
课程简介: Main issue of High Resolution Doppler Imagery is related to robust statistical estimation of Toeplitz Hermitian positive definite covariance matrices of sensor data time series (e.g. in Doppler Echography, in Underwater acoustic, in Electromagnetic Radar, in Pulsed Lidar). We consider this problem jointly in the framework of Riemannian symmetric spaces and the framework of Information Geometry. Both approaches lead to the same metric, that has been initially considered in other mathematical domains (study of Bruhat-Tits complete metric Space & Upper-half Siegel Space in Symplectic Geometry). Based on Frechet-Karcher barycenter definition & geodesics in Bruhat-Tits space, we address problem of N Covariance matrices Mean estimation. Our main contribution lies in the development of this theory for Complex Autoregressive models (maximum entropy solution of Doppler Spectral Analysis). Specific Blocks structure of the Toeplitz Hermitian covariance matrix is used to define an iterative & parallel algorithm for Siegel metric computation. Based on Affine Information Geometry theory, we introduce for Complex Autoregressive Model, Kohler metric on reflection coefficients based on Kohler potential function given by Doppler signal Entropy. The metric is closely related to Kohler-Einstein manifold and complex Monge-Ampere Equation. Finally, we study geodesics in space of Kohler potentials and action of Calabi & Kohler-Ricci Geometric Flows for this Complex Autoregressive Metric. We conclude with different results obtained on real Doppler Radar Data in HF & X bands : X-band radar monitoring of wake vortex turbulences, detection for Coastal X-band & HF Surface Wave Radars.
关 键 词: 多普勒成像; 传感器; 数据时间序列
课程来源: 视频讲座网
最后编审: 2020-07-31:yumf
阅读次数: 103