三维点云数据中对称性和重复模式的检测Detection of Symmetries and Repeated Patterns in 3D Point Cloud Data |
|
课程网址: | http://videolectures.net/etvc08_guibas_dosarp/ |
主讲教师: | Leonidas J. Guibas |
开课单位: | 斯坦福大学 |
开课时间: | 2008-12-05 |
课程语种: | 英语 |
中文简介: | 物理形状的数字模型在我们的经济和生活中正变得无处不在。这些模型有时是使用CAD工具从头开始设计的,但是它们越来越多地基于现有的真实物体,其形状是使用各种3D扫描技术获得的。在大多数情况下,原始扫描仪数据只是一组,但是从对象表面采样的一组非常大的点。我们感兴趣的是用于理解各种任务的大规模扫描几何的局部和全局结构的工具,包括模型完成,逆向工程,形状比较和检索,形状编辑,虚拟世界中的包含和模拟等。将提出许多基于点的技术,用于发现3D数据集中的全局结构,包括部分和近似对称,共享部分,重复模式等。在网络中分布的多个数据集中执行这种结构发现也是有意义的,实际上并没有将它们全部带到同一个主机上。 |
课程简介: | Digital models of physical shapes are becoming ubiquitous in our economy and life. Such models are sometimes designed ab initio using CAD tools, but more and more often they are based on existing real objects whose shape is acquired using various 3D scanning technologies. In most instances, the original scanner data is just a set, but a very large set, of points sampled from the surface of the object. We are interested in tools for understanding the local and global structure of such large-scale scanned geometry for a variety of tasks, including model completion, reverse engineering, shape comparison and retrieval, shape editing, inclusion in virtual worlds and simulations, etc. This talk will present a number of point-based techniques for discovering global structure in 3D data sets, including partial and approximate symmetries, shared parts, repeated patterns, etc. It is also of interest to perform such structure discovery across multiple data sets distributed in a network, without actually ever bring them all to the same host. |
关 键 词: | 3D扫描技术; 数字模型; CAD工具 |
课程来源: | 视频讲座网 |
最后编审: | 2019-04-14:lxf |
阅读次数: | 162 |