扩散张量成像的信息理论算法Information-Theoretic Algorithms for Diffusion Tensor Imaging |
|
课程网址: | http://videolectures.net/etvc08_vemuri_itafd/ |
主讲教师: | Baba C. Vemuri |
开课单位: | 佛罗里达大学 |
开课时间: | 2008-12-05 |
课程语种: | 英语 |
中文简介: | 几十年来,信息理论中的概念已广泛应用于图像处理,计算机视觉和医学图像分析。最广泛使用的概念是KL分歧,最小描述长度(MDL)等。这些概念已广泛用于图像配准,分割,分类等。在本章中,我们回顾了几种方法,主要由我们在中心的小组开发。佛罗里达大学的视觉,图形和医学成像,收集信息理论的概念,并应用它们来实现扩散加权磁共振(DW MRI)数据的分析。这种相对较新的MRI模式允许人们非侵入性地推断中枢神经系统中的轴突连接模式。本章的重点是回顾自动图像分析技术,这些技术允许我们自动分割DWMRI图像中的感兴趣区域,其中人们可能想要跟踪轴突路径以及重建包含轴突纤维交叉的复杂局部组织几何形状的方法。描述了算法应用于真实DW MRI数据集的实现结果被描述为证明所评论的方法的有效性。 |
课程简介: | Concepts from Information Theory have been used quite widely in Image Processing, Computer Vision and Medical Image Analysis for several decades now. Most widely used concepts are that of KL-divergence, minimum description length (MDL), etc. These concepts have been popularly employed for image registration, segmentation, classification etc. In this chapter we review several methods, mostly developed by our group at the Center for Vision, Graphics & Medical Imaging in the University of Florida, that glean concepts from Information Theory and apply them to achieve analysis of Diffusion-Weighted Magnetic Resonance (DW-MRI) data. This relatively new MRI modality allows one to non-invasively infer axonal connectivity patterns in the central nervous system. The focus of this chapter is to review automated image analysis techniques that allow us to automatically segment the region of interest in the DWMRI image wherein one might want to track the axonal pathways and also methods to reconstruct complex local tissue geometries containing axonal fiber crossings. Implementation results illustrating the algorithm application to real DW-MRI data sets are depicted to demonstrate the effectiveness of the methods reviewed. |
关 键 词: | 图像处理; 最小描述长度; 加权磁共振 |
课程来源: | 视频讲座网 |
最后编审: | 2020-05-16:杨雨(课程编辑志愿者) |
阅读次数: | 63 |