推广整数,同调计算AT模型的概念Extending the Notion of AT-Models for Integer Homology Computation |
|
课程网址: | http://videolectures.net/gbr07_real_etn/ |
主讲教师: | Pedro Real |
开课单位: | 塞维利亚大学 |
开课时间: | 2007-07-12 |
课程语种: | 英语 |
中文简介: | 当地面环是场时,代数拓扑模型(AT模型)的概念是计算(共)同源性,(共)同源发生器的代表性(共)周期和nD数字图像上同调的杯产品的有用工具。以及当图像遭受局部变化时控制拓扑信息。在本文中,我们形式化了lambda AT模型(lambda是一个整数)的概念,它扩展了AT模型之一,并允许在整数域中计算同源信息,而无需计算边界矩阵的Smith Normal Form。我们提出了一种计算这种模型的算法,获得Betti数,不变因子中涉及的素数p(对应于同源性的扭转子群),作为p的幂的不变因子的数量和一组代表对于这样的p,同源性mod p的发生器的循环。 |
课程简介: | When the ground ring is a field, the notion of algebraic topological model (AT-model) is a useful tool for computing (co)homology, representative (co)cycles of (co)homology generators and the cup product on cohomology of nD digital images as well as for controlling topological information when the image suffers local changes. In this paper, we formalize the notion of lambda-AT-model (lambda being an integer) which extends the one of AT-model and allows the computation of homological information in the integer domain without computing the Smith Normal Form of the boundary matrices. We present an algorithm for computing such a model, obtaining Betti numbers, the prime numbers p involved in the invariant factors (corresponding to the torsion subgroup of the homology), the amount of invariant factors that are a power of p and a set of representative cycles of the generators of homology mod p, for such p. |
关 键 词: | 代数拓扑模型; 同源性; 素数 |
课程来源: | 视频讲座网 |
最后编审: | 2019-04-15:cwx |
阅读次数: | 104 |