用原型选择嵌入向量空间中的图Graph Embedding in Vector Spaces by Means of Prototype Selection |
|
课程网址: | http://videolectures.net/gbr07_riesen_gevs/ |
主讲教师: | Kaspar Riesen |
开课单位: | 伯尔尼大学 |
开课时间: | 2007-07-12 |
课程语种: | 英语 |
中文简介: | 统计模式识别领域的特征在于使用特征向量用于模式表示,而字符串或更一般地,图形在结构模式识别中占主导地位。在本文中,我们旨在弥合基于特征的域和基于图的对象表示之间的差距。我们提出了一种通过原型选择和图形编辑距离计算将图形转换为n维实向量空间的一般方法。该方法基于特征向量建立对各种过程的访问,而不会失去图的表示能力。通过各种实验结果表明,该方法在向量空间中使用图形嵌入和分类,优于图域中基于k近邻分类的传统方法。 |
课程简介: | The field of statistical pattern recognition is characterized by the use of feature vectors for pattern representation, while strings or, more generally, graphs are prevailing in structural pattern recognition. In this paper we aim at bridging the gap between the domain of feature based and graph based object representation. We propose a general approach for transforming graphs into n-dimensional real vector spaces by means of prototype selection and graph edit distance computation. This method establishes the access to the wide range of procedures based on feature vectors without loosing the representational power of graphs. Through various experimental results we show that the proposed method, using graph embedding and classification in a vector space, outperforms the tradional approach based on k-nearest neighbor classification in the graph domain. |
关 键 词: | 统计模式; 字符串; 结构模式 |
课程来源: | 视频讲座网 |
最后编审: | 2019-04-15:cwx |
阅读次数: | 81 |