分层最大熵密度估计Hierarchical Maximum Entropy Density Estimation |
|
课程网址: | http://videolectures.net/icml07_dudik_hmed/ |
主讲教师: | Miroslav Dudík |
开课单位: | 普林斯顿大学 |
开课时间: | 2007-06-23 |
课程语种: | 英语 |
中文简介: | 我们研究了同时估计几个密度的问题,其中数据集被组织成重叠的组,例如层次结构。对于这个问题,我们提出了一个最大熵公式,它系统地合并了这些组,并允许我们在相似的数据集之间共享预测的强度。我们推导出一般性能保证,并展示一些先前的方法,如分层收缩和分层先验,可以作为特殊情况推导出来。我们在合成数据和现实世界应用中演示了所提出的技术,以模拟分类中分类的物种的地理分布。具体而言,我们模拟了澳大利亚湿热带和新南威尔士州东北部物种的地理分布。在这些地区,每个物种的少量样本显着阻碍了有效预测。通过跨分类群组合信息可获得实质性益处。 |
课程简介: | We study the problem of simultaneously estimating several densities where the datasets are organized into overlapping groups, such as a hierarchy. For this problem, we propose a maximum entropy formulation, which systematically incorporates the groups and allows us to share the strength of prediction across similar datasets. We derive general performance guarantees, and show how some previous approaches, such as hierarchical shrinkage and hierarchical priors, can be derived as special cases. We demonstrate the proposed technique on synthetic data and in a realworld application to modeling the geographic distributions of species hierarchically grouped in a taxonomy. Specifically, we model the geographic distributions of species in the Australian wet tropics and Northeast New South Wales. In these regions, small numbers of samples per species significantly hinder effective prediction. Substantial benefits are obtained by combining information across taxonomic groups. |
关 键 词: | 最大熵公式; 共享预测; 跨分类群 |
课程来源: | 视频讲座网 |
最后编审: | 2019-04-17:lxf |
阅读次数: | 89 |