基于多尺度流形学习的三维计算机图形自适应网格压缩Adaptive Mesh Compression in 3D Computer Graphics using Multiscale Manifold Learning |
|
课程网址: | http://videolectures.net/icml07_mahadevan_amc/ |
主讲教师: | Sridhar Mahadevan |
开课单位: | 马萨诸塞大学 |
开课时间: | 2007-06-23 |
课程语种: | 英语 |
中文简介: | 本文研究了使用流形学习对计算机图形学中的3D对象进行压缩。谱压缩使用对象拓扑图的拉普拉斯算子的特征向量来自适应地压缩3D对象。 3D压缩是一个具有挑战性的应用领域:对象模型可以有> 105个顶点,并且可靠地计算大图上的基函数在数值上具有挑战性。在本文中,我们介绍了一种新的多尺度流形学习方法,使用扩散小波进行三维网格压缩,小波的一般扩展到任意拓扑的图形。与拉普拉斯基的“全局”性质不同,扩散小波基是紧凑的,并且本质上是多尺度的。我们使用快速图分区方法分解大图,并组合在每个子图上计算的局部多尺度小波基。我们提出的结果表明,多尺度扩散小波基在大型三维物体的自适应压缩方面优于拉普拉斯基。 |
课程简介: | This paper investigates compression of 3D ob jects in computer graphics using manifold learning. Spectral compression uses the eigenvectors of the graph Laplacian of an object's topology to adaptively compress 3D objects. 3D compression is a challenging application domain: ob ject models can have > 105 vertices, and reliably computing the basis functions on large graphs is numerically challenging. In this paper, we introduce a novel multiscale manifold learning approach to 3D mesh compression using diffusion wavelets, a general extension of wavelets to graphs with arbitrary topology. Unlike the "global" nature of Laplacian bases, diffusion wavelet bases are compact, and multiscale in nature. We decompose large graphs using a fast graph partitioning method, and combine local multiscale wavelet bases computed on each subgraph. We present results showing that multiscale diffusion wavelets bases are superior to the Laplacian bases for adaptive compression of large 3D ob jects. |
关 键 词: | 流形学习; 计算机图形学; 3D对象 |
课程来源: | 视频讲座网 |
最后编审: | 2020-07-13:yumf |
阅读次数: | 108 |